Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 16(8): 3441-3451, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31184896

RESUMO

Nanodiamonds (ND), especially fluorescent NDs, represent potentially applicable drug and probe carriers for in vitro/in vivo applications. The main purpose of this study was to relate physical-chemical properties of carboxylated NDs to their intracellular distribution and impact on membranes and cell immunity-activation of inflammasome in the in vitro THP-1 cell line model. Dynamic light scattering, nanoparticle tracking analysis, and microscopic methods were used to characterize ND particles and their intracellular distribution. Fluorescent NDs penetrated the cell membranes by both macropinocytosis and mechanical cutting through cell membranes. We proved accumulation of fluorescent NDs in lysosomes. In this case, lysosomes were destabilized and cathepsin B was released into the cytoplasm and triggered pathways leading to activation of inflammasome NLRP3, as detected in THP-1 cells. Activation of inflammasome by NDs represents an important event that could underlie the described toxicological effects in vivo induced by NDs. According to our knowledge, this is the first in vitro study demonstrating direct activation of inflammasome by NDs. These findings are important for understanding the mechanism(s) of action of ND complexes and explain the ambiguity of the existing toxicological data.


Assuntos
Inflamassomos/efeitos dos fármacos , Microscopia Intravital/métodos , Lisossomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanodiamantes/administração & dosagem , Catepsina B/imunologia , Catepsina B/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Difusão Dinâmica da Luz , Fluorescência , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Nanodiamantes/química , Pinocitose , Células THP-1
2.
J Nanosci Nanotechnol ; 15(2): 1000-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353605

RESUMO

Biosensors based on nanodiamonds are able to penetrate through the cell membrane in a targeted manner and probe changes in real-time in the inner cellular space. In this work we performed exclusive theoretical and experimental study of nanodiamond particles adjusted for application in optically-traceable intracellular nanodiamond sensors. Theoretical and experimental study of specific optical properties of high-pressure high-temperature nanodiamonds containing NV- and NV0 centres were performed. The results are supported by theoretical modeling. The final result of this study was detection of luminescence ND in living cells and in vivo application od luminiscence NDs in chicken embryo, showing the detectability of luminescence ND using a standard confocal microscope. On the level of in cells selectivity numerous clusters of ND particles were present within the cytoplasm and at the same time no particles were absent in the nucleus-ND particles can be used as imaging or delivery system for specific cell parts targeting. From our study we can say that biosensors based on nanodiamonds (NDs) are able to penetrate through the cell membrane in a targeted manner and probe changes in the inner cellular space.


Assuntos
Corantes Fluorescentes/química , Macrófagos/citologia , Microscopia de Fluorescência/métodos , Modelos Químicos , Nanodiamantes/química , Animais , Linhagem Celular , Embrião de Galinha , Simulação por Computador , Composição de Medicamentos/métodos , Luz , Medições Luminescentes/métodos , Teste de Materiais , Camundongos , Nanodiamantes/ultraestrutura , Espalhamento de Radiação
3.
Bioact Mater ; 27: 447-460, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37168023

RESUMO

In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn - Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 µm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a-1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed.

4.
Materials (Basel) ; 14(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771840

RESUMO

If we want to decrease the probability of accidents in nuclear reactors, we must control the surface corrosion of the fuel rods. In this work we used a diamond coating containing <60% diamond and >40% sp2 "soft" carbon phase to protect Zr alloy fuel rods (ZIRLO®) against corrosion in steam at temperatures from 850 °C to 1000 °C. A diamond coating was grown in a pulse microwave plasma chemical vapor deposition apparatus and made a strong barrier against hydrogen uptake into ZIRLO® (ZIRLO) under all tested conditions. The coating also reduced ZIRLO corrosion in hot steam at 850 °C (for 60 min) and at 900 °C (for 30 min). However, the protective ability of the diamond coating decreased after 20 min in 1000 °C hot steam. The main goal of this work was to explain how diamond and sp2 "soft" carbon affect the ZIRLO fuel rod surface electrochemistry and semi conductivity and how these parameters influence the hot steam ZIRLO corrosion process. To achieve this goal, theoretical and experimental methods (scanning electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, carrier gas hot extraction, oxidation kinetics, ab initio calculations) were applied. Deep understanding of ZIRLO surface processes and states enable us to reduce accidental temperature corrosion in nuclear reactors.

5.
Nanomaterials (Basel) ; 9(7)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336572

RESUMO

The successful integration of few-layer thick hexagonal boron nitride (hBN) into devices based on two-dimensional materials requires fast and non-destructive techniques to quantify their thickness. Optical contrast methods and Raman spectroscopy have been widely used to estimate the thickness of two-dimensional semiconductors and semi-metals. However, they have so far not been applied to two-dimensional insulators. In this work, we demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hBN on SiO2/Si substrates, which was also measured by atomic force microscopy. Optical contrast of hBN on SiO2/Si substrates exhibits a linear trend with the number of hBN monolayers in the few-layer thickness range. We also used bandpass filters (500-650 nm) to improve the effectiveness of the optical contrast methods for thickness estimations. We also investigated the thickness dependence of the high frequency in-plane E2g phonon mode of atomically thin hBN on SiO2/Si substrates by micro-Raman spectroscopy, which exhibits a weak thickness-dependence attributable to the in-plane vibration character of this mode. Ab initio calculations of the Raman active phonon modes of atomically thin free-standing crystals support these results, even if the substrate can reduce the frequency shift of the E2g phonon mode by reducing the hBN thickness. Therefore, the optical contrast method arises as the most suitable and fast technique to estimate the thickness of hBN nanosheets.

6.
ACS Appl Mater Interfaces ; 10(35): 29552-29564, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30084638

RESUMO

Due to its high sensitivity to corrosion, the use of Si in direct photoelectrochemical (PEC) water-splitting systems that convert solar energy into chemical fuels has been greatly limited. Therefore, the development of low-cost materials resistant to corrosion under oxidizing conditions is an important goal toward a suitable protection of otherwise unstable semiconductors used in PEC cells. Here, we report on the development of a protective coating based on thin and electrically conductive nanocrystalline boron-doped diamond (BDD) layers. We found that  BDD layers protect the underlying Si photoelectrodes over a wide pH range (1-14) in aqueous electrolyte solutions. A BDD layer maintains an efficient charge carrier transfer from the underlying silicon to the electrolyte solution. Si|BDD photoelectrodes show no sign of performance degradation after a continuous PEC treatment in neutral, acidic, and basic electrolytes. The deposition of a cobalt phosphate (CoPi) oxygen evolution catalyst onto the BDD layer significantly reduces the overpotential for water oxidation, demonstrating the ability of  BDD layers to substitute the transparent conductive oxide coatings, such as indium tin oxide (ITO) and fluorine-doped tin oxide (FTO), frequently used as protective layers in Si photoelectrodes.

7.
Sci Rep ; 7(1): 6469, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743965

RESUMO

In this work, we demonstrate and describe an effective method of protecting zirconium fuel cladding against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments. Zr alloy samples were coated with nanocrystalline diamond (NCD) layers of different thicknesses, grown in a microwave plasma chemical vapor deposition apparatus. In addition to showing that such an NCD layer prevents the Zr alloy from directly interacting with water, we show that carbon released from the NCD film enters the underlying Zr material and changes its properties, such that uptake of oxygen and hydrogen is significantly decreased. After 100-170 days of exposure to hot water at 360 °C, the oxidation of the NCD-coated Zr plates was typically decreased by 40%. Protective NCD layers may prolong the lifetime of nuclear cladding and consequently enhance nuclear fuel burnup. NCD may also serve as a passive element for nuclear safety. NCD-coated ZIRLO claddings have been selected as a candidate for Accident Tolerant Fuel in commercially operated reactors in 2020.

8.
Recent Pat Nanotechnol ; 10(1): 59-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27018273

RESUMO

BACKGROUND: Zirconium alloys have very useful properties for nuclear facilities applications having low absorption cross-section of thermal electrons, high ductility, hardness and corrosion resistance. However, there is also a significant disadvantage: it reacts with water steam and during this (oxidative) reaction it releases hydrogen gas, which partly diffuses into the alloy forming zirconium hydrides. A new strategy for surface protection of zirconium alloys against undesirable oxidation in nuclear reactors by polycrystalline diamond film has been patented- Czech patent 305059: Layer protecting the surface of zirconium alloys used in nuclear reactors and PCT patent: Layer for protecting surface of zirconium alloys (Patent Number: WO2015039636-A1). The zirconium alloy surface was covered by polycrystalline diamond layer grown in plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. Substantial progress in the description and understanding of the polycrystalline diamond/ zirconium alloys interface and material properties under standard and nuclear reactors conditions (irradiation, hot steam oxidation experiments and heating-quenching cycles) was made. In addition, process technology for the deposition of protective polycrystalline diamond films onto the surface of zirconium alloys was optimized. RESULTS: Zircaloy2 nuclear fuel pins were covered by 300 nm thick protective polycrystalline diamond layer (PCD) using plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. The polycrystalline diamond layer protects the zirconium alloy surface against undesirable oxidation and consolidates its chemical stability while preserving its functionality. PCD covered Zircaloy2 and standard Zircaloy2 pins were for 30 min. oxidized in 1100°C hot steam. Under these conditions α phase of zirconium changes to ß phase (more opened for oxygen/hydrogen diffusion). PCD anticorrosion protection of Zircaloy nuclear fuel assemblies can significantly prolong lifetime of Zirconium alloy in nuclear reactors even above Zirconium phase transition temperatures. Even after ion beam irradiation (10 dpa, 3 MeV Fe(2+)) the diamond film still shows satisfactory structural integrity with both sp(3) and sp(2) carbon phases. Zircaloy2 under the carbon-based protective layer after hot steam oxidation test differed from the original Zircaloy2 material composition only very slightly, proving that the diamond coating increases the material resistance to high temperature oxidation. CONCLUSIONS: Zirconium alloys nuclear fuel pins' surfaces were covered by compact and homogeneous polycrystalline diamond layers consisting of sp(3) and sp(2) carbon phases with a high crystalline diamond content and low roughness. Diamond withstands very high temperatures, has excellent thermal conductivity and low chemical reactivity, it does not degrade over time and (important for the nuclear fuel cladding) being pure carbon, it has perfect neutron cross-section properties. Moreover, polycrystalline diamond layers consisting of crystalline (sp(3)) and amorphous (sp(2)) carbon phases could have suitable thermal expansion. Zirconium alloys coated with polycrystalline diamond film are protected against undesirable changes and processes. Further, the polycrystalline diamond layer prevents the reaction between the alloy surface and water vapor. During such reaction, water molecules dissociate and initiate formation of zirconium dioxide and hydrogen, accompanied by the release of large amount of heat. Thus the protective layer prevents the formation of hydrogen and the release of reaction heat. Few relevant patents to the topic have been reviewed and cited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA