Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nat Chem Biol ; 19(6): 778-789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36864192

RESUMO

Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.


Assuntos
Ecossistema , Mucinas , Mucinas/metabolismo , Polissacarídeos/metabolismo , Bactérias/metabolismo
2.
Appl Environ Microbiol ; 88(6): e0218721, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108084

RESUMO

Gum arabic is an arabinogalactan protein (AGP) that is effective as a prebiotic for the growth of bifidobacteria in the human intestine. We recently identified a key enzyme in the glycoside hydrolase (GH) family 39, 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase), for the assimilation of gum arabic AGP in Bifidobacterium longum subsp. longum. The enzyme released α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP and facilitated the action of other enzymes for degrading the AGP backbone and modified sugar. In this study, we identified an α-l-arabinofuranosidase (BlArafE; encoded by BLLJ_1850), a multidomain enzyme with both GH43_22 and GH43_34 catalytic domains, as a critical enzyme for the degradation of modified α-l-arabinofuranosides in gum arabic AGP. Site-directed mutagenesis approaches revealed that the α1,3/α1,4-Araf double-substituted gum arabic AGP side chain was initially degraded by the GH43_22 domain and subsequently cleaved by the GH43_34 domain to release α1,3-Araf and α1,4-Araf residues, respectively. Furthermore, we revealed that a tetrasaccharide, α-l-Rhap-(1→4)-ß-d-GlcpA-(1→6)-ß-d-Galp-(1→6)-d-Gal, was a limited degradative oligosaccharide in the gum arabic AGP fermentation of B. longum subsp. longum JCM7052. The oligosaccharide was produced from gum arabic AGP by the cooperative action of the three cell surface-anchoring enzymes, GAfase, exo-ß1,3-galactanase (Bl1,3Gal), and BlArafE, on B. longum subsp. longum JCM7052. Furthermore, the tetrasaccharide was utilized by the commensal bacteria. IMPORTANCE Terminal galactose residues of the side chain of gum arabic arabinogalactan protein (AGP) are mainly substituted by α1,3/α1,4-linked Araf and ß1,6-linked α-l-Rhap-(1→4)-ß-d-GlcpA residues. This study found a multidomain BlArafE with GH43_22 and GH43_34 catalytic domains showing cooperative action for degrading α1,3/α1,4-linked Araf of the side chain of gum arabic AGP. In particular, the GH43_34 domain of BlArafE was a novel α-l-arabinofuranosidase for cleaving the α1,4-Araf linkage of terminal galactose. α-l-Rhap-(1→4)-ß-d-GlcpA-(1→6)-ß-d-Galp-(1→6)-d-Gal tetrasaccharide was released from gum arabic AGP by the cooperative action of GAfase, GH43_24 exo-ß-1,3-galactanase (Bl1,3Gal), and BlArafE and remained after B. longum subsp. longum JCM7052 culture. Furthermore, in vitro assimilation test of the remaining oligosaccharide using Bacteroides species revealed that cross-feeding may occur from bifidobacteria to other taxonomic groups in the gut.


Assuntos
Bifidobacterium longum , Bifidobacterium longum/metabolismo , Galactanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Goma Arábica , Humanos , Oligossacarídeos/química
3.
Appl Microbiol Biotechnol ; 106(5-6): 1957-1965, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35235007

RESUMO

Arabinoxylan (AX) and arabinoxylooligosaccharides (AXOs) are carbohydrate sources utilized by Bifidobacterium longum subsp. longum. However, their degradation pathways are poorly understood. In this study, we characterized two genes, BLLJ_1850 and BLLJ_1851, in the hemicellulose-degrading gene cluster (BLLJ_1836-BLLJ_1859) of B. longum subsp. longum JCM 1217. Both recombinant enzymes expressed in Escherichia coli exhibited exo-α-L-arabinofuranosidase activity toward p-nitrophenyl-α-L-arabinofuranoside. BlArafE (encoded by BLLJ_1850) contains the glycoside hydrolase family 43 (GH43), subfamily 22 (GH43_22), and GH43_34 domains. The BlArafE GH43_22 domain was demonstrated to release α1,3-linked Araf from AX, but the function of BlArafE GH43_34 could not be clearly identified in this study. BlArafD (encoded by BLLJ_1851) contains GH43 unclassified subfamily (GH43_UC) and GH43_26 domains. The BlArafD GH43_UC domain showed specificity for α1,2-linked Araf in α1,2- and α1,3-Araf double-substituted structures in AXOs, while BlArafD GH43_26 was shown to hydrolyze α1,5-linked Araf in the arabinan backbone. Co-incubation of BlArafD and BlArafE revealed that these two enzymes sequentially removed α1,2-Araf and α1,3-Araf from double-substituted AXOs in this order. B. longum strain lacking BLLJ_1850-BLLJ_1853 did not grow in the medium containing α1,2/3-Araf double-substituted AXOs, suggesting that BlArafE and BlArafD are important for the assimilation of AX. KEY POINTS: • BlArafD GH43 unclassified subfamily domain is a novel α1,2-L-arabinofuranosidase. • BlArafE GH43 subfamily 22 domain is an α1,3-L-arabinofuranosidase. • BlArafD and BlArafE cooperatively degrade α1,2/3-Araf double-substituted arabinoxylan.


Assuntos
Glicosídeo Hidrolases , Xilanos , Bifidobacterium/enzimologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato , Xilanos/metabolismo
4.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635377

RESUMO

Arabinose-containing poly- or oligosaccharides are suitable carbohydrate sources for Bifidobacterium longum subsp. longum However, their degradation pathways are poorly understood. In this study, we cloned and characterized the previously uncharacterized glycoside hydrolase family 43 (GH43) enzymes B. longum subsp. longum ArafC (BlArafC; encoded by BLLJ_1852) and B. longum subsp. longum ArafB (BlArafB; encoded by BLLJ_1853) from B. longum subsp. longum JCM 1217. Both enzymes exhibited α-l-arabinofuranosidase activity toward p-nitrophenyl-α-l-arabinofuranoside but no activity toward p-nitrophenyl-ß-d-xylopyranoside. The specificities of the two enzymes for l-arabinofuranosyl linkages were different. BlArafC catalyzed the hydrolysis of α1,2- and α1,3-l-arabinofuranosyl linkages found on the side chains of both arabinan and arabinoxylan. It released l-arabinose 100 times faster from arabinan than from arabinoxylan but did not act on arabinogalactan. On the other hand, BlArafB catalyzed the hydrolysis of the α1,5-l-arabinofuranosyl linkage found on the arabinan backbone. It released l-arabinose from arabinan but not from arabinoxylan or arabinogalactan. Coincubation of BlArafC and BlArafB revealed that these two enzymes are able to degrade arabinan in a synergistic manner. Both enzyme activities were suppressed with EDTA treatment, suggesting that they require divalent metal ions. The GH43 domains of BlArafC and BlArafB are classified into GH43 subfamilies 27 and 22, respectively, but show very low similarity (less than 15% identity) with other biochemically characterized members in the corresponding subfamilies. The B. longum subsp. longum strain lacking the GH43 gene cluster that includes BLLJ_1850 to BLLJ_1853 did not grow in arabinan medium, suggesting that BlArafC and BlArafB are important for assimilation of arabinan.IMPORTANCE We identified two novel α-l-arabinofuranosidases, BlArafC and BlArafB, from B. longum subsp. longum JCM 1217, both of which are predicted to be extracellular membrane-bound enzymes. The former specifically acts on α1,2/3-l-arabinofuranosyl linkages, while the latter acts on the α1,5-l-arabinofuranosyl linkage. These enzymes cooperatively degrade arabinan and are required for the efficient growth of bifidobacteria in arabinan-containing medium. The genes encoding these enzymes are located side by side in a gene cluster involved in metabolic pathways for plant-derived polysaccharides, which may confer adaptability in adult intestines.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium longum/enzimologia , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bifidobacterium longum/química , Bifidobacterium longum/genética , Bifidobacterium longum/crescimento & desenvolvimento , Clonagem Molecular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Família Multigênica , Alinhamento de Sequência , Especificidade por Substrato
5.
J Biol Chem ; 292(29): 12126-12138, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28546425

RESUMO

The α-N-acetylgalactosaminidase from the probiotic bacterium Bifidobacterium bifidum (NagBb) belongs to the glycoside hydrolase family 129 and hydrolyzes the glycosidic bond of Tn-antigen (GalNAcα1-Ser/Thr). NagBb is involved in assimilation of O-glycans on mucin glycoproteins by B. bifidum in the human gastrointestinal tract, but its catalytic mechanism has remained elusive because of a lack of sequence homology around putative catalytic residues and of other structural information. Here we report the X-ray crystal structure of NagBb, representing the first GH129 family structure, solved by the single-wavelength anomalous dispersion method based on sulfur atoms of the native protein. We determined ligand-free, GalNAc, and inhibitor complex forms of NagBb and found that Asp-435 and Glu-478 are located in the catalytic domain at appropriate positions for direct nucleophilic attack at the anomeric carbon and proton donation for the glycosidic bond oxygen, respectively. A highly conserved Asp-330 forms a hydrogen bond with the O4 hydroxyl of GalNAc in the -1 subsite, and Trp-398 provides a stacking platform for the GalNAc pyranose ring. Interestingly, a metal ion, presumably Ca2+, is involved in the recognition of the GalNAc N-acetyl group. Mutations at Asp-435, Glu-478, Asp-330, and Trp-398 and residues involved in metal coordination (including an all-Ala quadruple mutant) significantly reduced the activity, indicating that these residues and the metal ion play important roles in substrate recognition and catalysis. Interestingly, NagBb exhibited some structural similarities to the GH101 endo-α-N-acetylgalactosaminidases, but several critical differences in substrate recognition and reaction mechanism account for the different activities of these two enzymes.


Assuntos
Acetilgalactosamina/metabolismo , Proteínas de Bactérias/metabolismo , Bifidobacterium bifidum/enzimologia , Coenzimas/metabolismo , Glicosídeo Hidrolases/metabolismo , Metais/metabolismo , alfa-N-Acetilgalactosaminidase/metabolismo , Acetilgalactosamina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Coenzimas/química , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Ligantes , Metais/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Probióticos , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , alfa-N-Acetilgalactosaminidase/antagonistas & inibidores , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/genética
6.
Biosci Biotechnol Biochem ; 82(11): 2030-2039, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30027820

RESUMO

Sialidases catalyze the removal of terminal sialic acid from various complex carbohydrates. In the gastrointestinal tract, sialic acid is commonly found in the sugar chain of mucin, and many enteric commensals use mucin as a nutrient source. We previously identified two different sialidase genes in Bifidobacterium bifidum, and one was cloned and expressed as an extracellular protein designated as exo-α-sialidase SiaBb2. The other exo-α-sialidase gene (siabb1) from the same bifidobacterium encodes an extracellular protein (SiaBb1) consisting of 1795 amino acids with a molecular mass of 189 kDa. SiaBb1 possesses a catalytic domain that classifies this enzyme as a glycoside hydrolase family 33 member. SiaBb1 preferentially hydrolyzes α2,3-linked sialic acid over α2,6-linked sialic acid from sialoglycan, which is the same as SiaBb2. However, SiaBb1 has an SGNH hydrolase domain with sialate-O-acetylesterase activity and an N-terminal signal sequence and C-terminal transmembrane region. SiaBb1 is the first bifunctional sialidase identified with esterase activity. Abbreviations: GalNAc: N-acetyl-D-galactosamine; Fuc: L-fucose; Gal: D-galactose.


Assuntos
Acetilesterase/metabolismo , Bifidobacterium bifidum/enzimologia , Neuraminidase/metabolismo , Acetilesterase/química , Acetilesterase/genética , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Hidrólise , Mucinas/metabolismo , Neuraminidase/química , Neuraminidase/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Biosci Biotechnol Biochem ; 81(2): 283-291, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27832720

RESUMO

We have recently generated a highly efficient 1,2-α-l-fucosynthase (BbAfcA N423H mutant) by protein engineering of 1,2-α-l-fucosidase from Bifidobacterium bifidum JCM 1254. This synthase could specifically introduce H-antigens (Fucα1-2Gal) into the non-reducing ends of oligosaccharides and in O-linked glycans in mucin glycoprotein. In the present study, we show an extended application of the engineered 1,2-α-l-fucosynthase by demonstrating its ability to insert Fuc residues into N- and O-glycans in fetuin glycoproteins, GM1 ganglioside, and a plant-derived xyloglucan nonasaccharide. This application study broadens the feasibility of this novel H-antigen synthesis technique in functional glycomics.


Assuntos
Dissacarídeos/química , Dissacarídeos/metabolismo , Fucose/química , Gangliosídeos/química , Glucanos/química , Oligossacarídeos/química , Xilanos/química , alfa-L-Fucosidase/metabolismo , Assialoglicoproteínas/metabolismo , Bifidobacterium/enzimologia , Fetuínas/metabolismo , Fucose/metabolismo , Gangliosídeos/metabolismo , Glucanos/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Mutação , Oligossacarídeos/metabolismo , Plantas/química , Engenharia de Proteínas , Xilanos/metabolismo , alfa-L-Fucosidase/genética
8.
Biosci Biotechnol Biochem ; 81(10): 2018-2027, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28814130

RESUMO

Human gut symbiont bifidobacteria possess carbohydrate-degrading enzymes that act on the O-linked glycans of intestinal mucins to utilize those carbohydrates as carbon sources. However, our knowledge about mucin type O-glycan degradation by bifidobacteria remains fragmentary, especially regarding how they decompose sulfated glycans, which are abundantly found in mucin sugar-chains. Here, we examined the abilities of several Bifidobacterium strains to degrade a sulfated glycan substrate and identified a 6-sulfo-ß-d-N-acetylglucosaminidase, also termed sulfoglycosidase, encoded by bbhII from Bifidobacterium bifidum JCM 7004. A recombinant BbhII protein showed a substrate preference toward 6-sulfated and 3,4-disulfated N-acetylglucosamines over non-sulfated and 3-sulfated N-acetylglucosamines. The purified BbhII directly released 6-sulfated N-acetylglucosamine from porcine gastric mucin and the expression of bbhII was moderately induced in the presence of mucin. This de-capping activity may promote utilization of sulfated glycans of mucin by other bacteria including bifidobacteria, thereby establishing the symbiotic relationship between human and gut microbes.


Assuntos
Acetilglucosaminidase/metabolismo , Bifidobacterium bifidum/enzimologia , Mucinas/metabolismo , Polissacarídeos/metabolismo , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Sequência de Aminoácidos , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Regulação Bacteriana da Expressão Gênica
9.
J Invertebr Pathol ; 142: 71-81, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27863961

RESUMO

Parasporin-2 (PS2), alternatively named Cry46Aa1, an anticancer protein derived from Bacillus thuringiensis strain A1547, causes specific cell damage via PS2 oligomerization in the cell membrane. Although PS2 requires glycosylphosphatidylinositol (GPI)-anchored proteins for its cytocidal action, their precise role is unknown. Here, we report that the glycan of GPI induces PS2 oligomerization, which causes cell death. Cytotoxicity, cell-binding and oligomerization of the toxin were not observed in GPI-anchored protein-deficient Chinese hamster ovary cells. Expression and protease-treatment analyses showed that the actions of the toxin were dependent on the glycan core, not the polypeptide moiety, of GPI-anchored proteins. However, surface expression of some GPI-anchored proteins is observed in PS2-insensitive cells. These data suggest that GPI-anchored proteins do not determine the target specificity, but instead function as a kind of coreceptor, in the cytocidal action of PS2.


Assuntos
Antineoplásicos/metabolismo , Endotoxinas/metabolismo , Receptores de Folato com Âncoras de GPI/metabolismo , Animais , Antineoplásicos/farmacologia , Bacillus thuringiensis/metabolismo , Western Blotting , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Endotoxinas/farmacologia , Imunofluorescência , Imunoprecipitação , Reação em Cadeia da Polimerase , Polissacarídeos , Ligação Proteica
10.
Glycobiology ; 26(11): 1235-1247, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550195

RESUMO

Fucα1-2 Gal linkages, or H-antigens, constitute histo-blood group antigens and are involved in various physiological processes. In addition, recent studies have shown that the H-antigen-containing glycans play an important role, not only in establishing harmonious relationship between gut microbes and the host, but also in preventing gut dysbiosis-related diseases. Therefore, development of an efficient method for introducing Fuc residue at Gal residue at the nonreducing end of glycans via α-(1→2) linkage is desired for research as well as medicinal purposes. In this study, we succeeded in derivatizing inverting 1,2-α-l-fucosidase (AfcA) into a highly efficient 1,2-α-l-fucosynthase. The synthase specifically synthesized H type 1-, type 2-, type 3- and type 4-chain-containing oligosaccharides with yields of 57-75% based on acceptor depletion. The synthase was also able to specifically introduce Fuc residues into Lewis a/x antigens to produce Lewis b/y antigens, with yields of 43% and 62%, respectively. In addition, the enzyme efficiently introduced H-antigens into sugar chains of porcine gastric mucins, as revealed by lectin blotting and mass spectroscopy analysis of the sugars. Detailed acceptor specificity analysis using various monosaccharides and oligosaccharides unraveled unique substrate recognition feature of this synthase at the subsite (+1), which can be explained by our previous X-ray crystallographic study of AfcA. These results show that the synthase developed in this study could serve as an alternative to other H-antigen synthesis methods involving α-1,2-fucosyltransferases and retaining α-fucosidase.


Assuntos
Antígenos de Bactérias/metabolismo , Glicoproteínas/metabolismo , Oligossacarídeos/metabolismo , Açúcares/metabolismo , alfa-L-Fucosidase/metabolismo , Antígenos de Bactérias/química , Bifidobacterium bifidum/enzimologia , Biocatálise , Configuração de Carboidratos , Glicoproteínas/química , Modelos Moleculares , Oligossacarídeos/química , Açúcares/química
11.
Appl Microbiol Biotechnol ; 99(9): 3941-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25381911

RESUMO

α-Linked N-acetylglucosamine is one of the major glyco-epitopes in O-glycan of gastroduodenal mucin. Here, we identified glycoside hydrolase (GH) family 89 α-N-acetylglucosaminidase, termed AgnB, from Bifidobacterium bifidum JCM 1254, which is essentially specific to GlcNAcα1-4Gal structure. AgnB is a membrane-anchored extracellular enzyme consisting of a GH89 domain and four carbohydrate-binding module (CBM) 32 domains. Among four CBM32 domains, three tandem ones at C-terminus showed to bind porcine gastric mucin, suggesting that these domains enhance the enzyme activity by increasing affinity for multivalent substrates. AgnB might be important for assimilation of gastroduodenal mucin by B. bifidum and also applicable to production of prebiotic oligosaccharides from porcine gastric mucin.


Assuntos
Acetilglucosamina/metabolismo , Acetilglucosaminidase/metabolismo , Bifidobacterium/enzimologia , Mucinas Gástricas/metabolismo , Sítios de Ligação
12.
J Biol Chem ; 288(17): 11795-806, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479733

RESUMO

Human milk oligosaccharides contain a large variety of oligosaccharides, of which lacto-N-biose I (Gal-ß1,3-GlcNAc; LNB) predominates as a major core structure. A unique metabolic pathway specific for LNB has recently been identified in the human commensal bifidobacteria. Several strains of infant gut-associated bifidobacteria possess lacto-N-biosidase, a membrane-anchored extracellular enzyme, that liberates LNB from the nonreducing end of human milk oligosaccharides and plays a key role in the metabolic pathway of these compounds. Lacto-N-biosidase belongs to the glycoside hydrolase family 20, and its reaction proceeds via a substrate-assisted catalytic mechanism. Several crystal structures of GH20 ß-N-acetylhexosaminidases, which release monosaccharide GlcNAc from its substrate, have been determined, but to date, a structure of lacto-N-biosidase is unknown. Here, we have determined the first three-dimensional structures of lacto-N-biosidase from Bifidobacterium bifidum JCM1254 in complex with LNB and LNB-thiazoline (Gal-ß1,3-GlcNAc-thiazoline) at 1.8-Å resolution. Lacto-N-biosidase consists of three domains, and the C-terminal domain has a unique ß-trefoil-like fold. Compared with other ß-N-acetylhexosaminidases, lacto-N-biosidase has a wide substrate-binding pocket with a -2 subsite specific for ß-1,3-linked Gal, and the residues responsible for Gal recognition were identified. The bound ligands are recognized by extensive hydrogen bonds at all of their hydroxyls consistent with the enzyme's strict substrate specificity for the LNB moiety. The GlcNAc sugar ring of LNB is in a distorted conformation near (4)E, whereas that of LNB-thiazoline is in a (4)C1 conformation. A possible conformational pathway for the lacto-N-biosidase reaction is discussed.


Assuntos
Proteínas de Bactérias/química , Bifidobacterium/enzimologia , Glicosídeo Hidrolases/química , Modelos Moleculares , Dobramento de Proteína , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
J Biol Chem ; 288(35): 25194-25206, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23843461

RESUMO

Infant gut-associated bifidobacteria possess species-specific enzymatic sets to assimilate human milk oligosaccharides, and lacto-N-biosidase (LNBase) is a key enzyme that degrades lacto-N-tetraose (Galß1-3GlcNAcß1-3Galß1-4Glc), the main component of human milk oligosaccharides, to lacto-N-biose I (Galß1-3GlcNAc) and lactose. We have previously identified LNBase activity in Bifidobacterium bifidum and some strains of Bifidobacterium longum subsp. longum (B. longum). Subsequently, we isolated a glycoside hydrolase family 20 (GH20) LNBase from B. bifidum; however, the genome of the LNBase(+) strain of B. longum contains no GH20 LNBase homolog. Here, we reveal that locus tags BLLJ_1505 and BLLJ_1506 constitute LNBase from B. longum JCM1217. The gene products, designated LnbX and LnbY, respectively, showed no sequence similarity to previously characterized proteins. The purified enzyme, which consisted of LnbX only, hydrolyzed via a retaining mechanism the GlcNAcß1-3Gal linkage in lacto-N-tetraose, lacto-N-fucopentaose I (Fucα1-2Galß1-3GlcNAcß1-3Galß1-4Glc), and sialyllacto-N-tetraose a (Neu5Acα2-3Galß1-3GlcNAcß1-3Galß1-4Gal); the latter two are not hydrolyzed by GH20 LNBase. Among the chromogenic substrates examined, the enzyme acted on p-nitrophenyl (pNP)-ß-lacto-N-bioside I (Galß1-3GlcNAcß-pNP) and GalNAcß1-3GlcNAcß-pNP. GalNAcß1-3GlcNAcß linkage has been found in O-mannosyl glycans of α-dystroglycan. Therefore, the enzyme may serve as a new tool for examining glycan structures. In vitro refolding experiments revealed that LnbY and metal ions (Ca(2+) and Mg(2+)) are required for proper folding of LnbX. The LnbX and LnbY homologs have been found only in B. bifidum, B. longum, and a few gut microbes, suggesting that the proteins have evolved in specialized niches.


Assuntos
Proteínas de Bactérias/química , Bifidobacterium/enzimologia , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/genética , Cálcio/química , Cálcio/metabolismo , Genes Bacterianos/fisiologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Lactente , Magnésio/química , Magnésio/metabolismo , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Especificidade por Substrato
14.
Appl Microbiol Biotechnol ; 98(9): 4021-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24253830

RESUMO

Baicalin (baicalein 7-O-ß-D-glucuronide) is one of the major flavonoid glucuronides found in traditional herbal medicines. Because its aglycone, baicalein, is absorbed more quickly and shows more effective properties than baicalin, the conversion of baicalin into baicalein by ß-glucuronidase (GUS) has drawn the attention of researchers. Recently, we have found that Lactobacillus brevis subsp. coagulans can convert baicalin to baicalein. Therefore, we aimed to identify and characterize the converting enzyme from L. brevis subsp. coagulans. First, we purified this enzyme from the cell-free extracts of L. brevis subsp. coagulans and cloned its gene. Surprisingly, this enzyme was found to be a GUS belonging to glycoside hydrolase (GH) family 30 (designated as LcGUS30), and its amino acid sequence has little similarity with any GUS belonging to GH families 1, 2, and 79 that have been reported so far. We then established a high-level expression and simple purification system of the recombinant LcGUS30 in Escherichia coli. The detailed analysis of the substrate specificity revealed that LcGUS30 has strict specificity toward glycon but not toward aglycones. Interestingly, LcGUS30 prefers baicalin rather than estrone 3-(ß-D-glucuronide), one of the human endogenous steroid hormones. These results indicated that L. brevis subsp. coagulans and LcGUS30 should serve as powerful tools for the construction of a safe bioconversion system for baicalin. In addition, we propose that this novel type of GUS forms a new group in subfamily 3 of GH family 30.


Assuntos
Flavanonas/metabolismo , Flavonoides/metabolismo , Glucuronidase/isolamento & purificação , Glucuronidase/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Levilactobacillus brevis/enzimologia , Sequência de Aminoácidos , Biotransformação , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Estrona/análogos & derivados , Estrona/metabolismo , Expressão Gênica , Glucuronidase/genética , Glicosídeo Hidrolases/genética , Hidrólise , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Biotechnol Lett ; 36(12): 2507-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25129050

RESUMO

Glucosylceramide and galactosylceramide were detected in three Aspergillus species: Aspergillus oryzae, Aspergillus sojae and Aspergillus. awamori, using borate-coated TLC. The cerebrosides from A. oryzae were further purified by ion exchange and iatrobeads column chromatographies with or without borate, and determined the composition of sugar, fatty acid and sphingoid base by GC/MS, MALDI-TOF/MS and (1)H-NMR. We identified them as ß-glucosylceramide and ß-galactosylceramide. The ceramide moiety of both cerebrosides consisted mainly of 2-hydroxystearic acid and either 9-methyl-octadeca-4, 8-sphingadienine or octadeca-4, 8-sphingadienine. To our knowledge, this is the first study to provide evidence for the presence of ß-galactosylceramide in A. oryzae.


Assuntos
Aspergillus oryzae/química , Galactosilceramidas/análise , Cromatografia Líquida , Cromatografia em Camada Fina , Galactosilceramidas/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Glucosilceramidas/análise , Glucosilceramidas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Methods Mol Biol ; 2763: 337-344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347423

RESUMO

Bacterial sialidase and sulfoglycosidase may act on the acidic modifications of mucin O-glycans, producing sialic acid and 6-sulfated N-acetylglucosamine, respectively. Assays for these enzymes, using mucin as a substrate, are enabled by the detection and/or quantification of the free monosaccharides that are released by these enzymes. This chapter describes enzyme reactions with mucin, detection by thin-layer chromatography of sialic acid, and quantification of 6-sulfated N-acetylglucosamine by liquid chromatography-tandem mass spectrometry.


Assuntos
Mucinas , Ácido N-Acetilneuramínico , Mucinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Acetilglucosamina/metabolismo , Polissacarídeos/metabolismo , Metabolismo dos Carboidratos , Bactérias/metabolismo , Sulfatos
17.
J Biol Chem ; 287(1): 693-700, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22090027

RESUMO

Bifidobacteria inhabit the lower intestine of mammals including humans where the mucin gel layer forms a space for commensal bacteria. We previously identified that infant-associated bifidobacteria possess an extracellular membrane-bound endo-α-N-acetylgalactosaminidase (EngBF) that may be involved in degradation and assimilation of mucin-type oligosaccharides. However, EngBF is highly specific for core-1-type O-glycan (Galß1-3GalNAcα1-Ser/Thr), also called T antigen, which is mainly attached onto gastroduodenal mucins. By contrast, core-3-type O-glycans (GlcNAcß1-3GalNAcα1-Ser/Thr) are predominantly found on the mucins in the intestines. Here, we identified a novel α-N-acetylgalactosaminidase (NagBb) from Bifidobacterium bifidum JCM 1254 that hydrolyzes the Tn antigen (GalNAcα1-Ser/Thr). Sialyl and galactosyl core-3 (Galß1-3/4GlcNAcß1-3(Neu5Acα2-6)GalNAcα1-Ser/Thr), a major tetrasaccharide structure on MUC2 mucin primarily secreted from goblet cells in human sigmoid colon, can be serially hydrolyzed into Tn antigen by previously identified bifidobacterial extracellular glycosidases such as α-sialidase (SiaBb2), lacto-N-biosidase (LnbB), ß-galactosidase (BbgIII), and ß-N-acetylhexosaminidases (BbhI and BbhII). Because NagBb is an intracellular enzyme without an N-terminal secretion signal sequence, it is likely involved in intracellular degradation and assimilation of Tn antigen-containing polypeptides, which might be incorporated through unknown transporters. Thus, bifidobacteria possess two distinct pathways for assimilation of O-glycans on gastroduodenal and intestinal mucins. NagBb homologs are conserved in infant-associated bifidobacteria, suggesting a significant role for their adaptation within the infant gut, and they were found to form a new glycoside hydrolase family 129.


Assuntos
Bifidobacterium/enzimologia , Mucinas/metabolismo , Proteólise , alfa-N-Acetilgalactosaminidase/metabolismo , Bifidobacterium/citologia , Bifidobacterium/genética , Biocatálise , Sequência de Carboidratos , Clonagem Molecular , Humanos , Lactente , Espaço Intracelular/enzimologia , Dados de Sequência Molecular , Filogenia , alfa-N-Acetilgalactosaminidase/genética
18.
J Biol Chem ; 287(20): 16709-19, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22451675

RESUMO

α-L-fucosyl residues attached at the non-reducing ends of glycoconjugates constitute histo-blood group antigens Lewis (Le) and ABO and play fundamental roles in various biological processes. Therefore, establishing a method for synthesizing the antigens is important for functional glycomics studies. However, regiospecific synthesis of glycosyl linkages, especially α-L-fucosyl linkages, is quite difficult to control both by chemists and enzymologists. Here, we generated an α-L-fucosynthase that specifically introduces Le(a) and Le(x) antigens into the type-1 and type-2 chains, respectively; i.e. the enzyme specifically accepts the disaccharide structures (Galß1-3/4GlcNAc) at the non-reducing ends and attaches a Fuc residue via an α-(1,4/3)-linkage to the GlcNAc. X-ray crystallographic studies revealed the structural basis of this strict regio- and acceptor specificity, which includes the induced fit movement of the catalytically important residues, and the difference between the active site structures of 1,3-1,4-α-L-fucosidase (EC 3.2.1.111) and α-L-fucosidase (EC 3.2.1.51) in glycoside hydrolase family 29. The glycosynthase developed in this study should serve as a potentially powerful tool to specifically introduce the Le(a/x) epitopes onto labile glycoconjugates including glycoproteins. Mining glycosidases with strict specificity may represent the most efficient route to the specific synthesis of glycosidic bonds.


Assuntos
Proteínas de Bactérias/química , Bifidobacterium/enzimologia , Fucose/química , Fucosiltransferases/química , Oligossacarídeos/química , Proteínas de Bactérias/genética , Bifidobacterium/genética , Domínio Catalítico , Epitopos/química , Fucosiltransferases/genética , Humanos , Antígenos do Grupo Sanguíneo de Lewis
19.
Glycobiology ; 23(6): 736-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23436287

RESUMO

In four yeast strains, Ogataea minuta, Candida parapolymorpha, Pichia anomala and Zygosaccharomyces rouxii, we identified endo-ß-N-acetylglucosaminidase (ENGase) homologous sequences by database searches; in each of the four species, a corresponding enzyme activity was also confirmed in crude cell extract obtained from each strain. The O. minuta ENGase (Endo-Om)-encoding gene was directly amplified from O. minuta genomic DNA and sequenced. The Endo-Om-encoding gene contained a 2319-bp open-reading frame; the deduced amino acid sequence indicated that the putative protein belonged to glycoside hydrolase family 85. The gene was introduced into O. minuta, and the recombinant Endo-Om was overexpressed and purified. When the enzyme assay was performed using an agalacto-biantennary oligosaccharide as a substrate, Endo-Om exhibited both hydrolysis and transglycosylation activities. Endo-Om exhibited hydrolytic activity for high-mannose, hybrid, biantennary and (2,6)-branched triantennary N-linked oligosaccharides, but not for tetraantennary, (2,4)-branched triantennary, bisecting N-acetylglucosamine structure and core-fucosylated biantennary N-linked oligosaccharides. Endo-Om also was able to hydrolyze N-glycans attached to RNase B and human transferrin under both denaturing and nondenaturing conditions. Thus, the present study reports the detection and characterization of a novel yeast ENGase.


Assuntos
Proteínas Fúngicas/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Saccharomycetales/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Glicosilação , Humanos , Hidrólise , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/biossíntese , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Dados de Sequência Molecular , Oligossacarídeos/química , Filogenia , Processamento de Proteína Pós-Traducional , Ribonucleases/química , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transferrina/química
20.
Glycobiology ; 23(10): 1142-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23836288

RESUMO

Endoplasmic reticulum (ER) α-glucosidase I is an enzyme that trims the distal α1,2-linked glucose (Glc) residue from the Glc3Man9GlcNAc2 oligosaccharide following its addition to nascent glycoproteins in the initial step of processing. This reaction is critical to the subsequent processing of N-glycans and thus defects in α-glucosidase I gene in human cause congenital disorder of glycosylation (CDG) type IIb. We identified the Caenorhabditis elegans α-glucosidase I gene (F13H10.4, designated agl-1) that encodes a polypeptide with 36% identity to human α-glucosidase I. The agl-1 cDNA restored the expression of complex-type N-glycans on the cell surface of α-glucosidase I-defective Chinese hamster ovary Lec23 cells. RNAi knockdown of agl-1 [agl-1(RNAi)] produced worms that were visibly similar to wild-type, but lifespan was reduced to about half of the control. Analyses of N-glycosylation in agl-1(RNAi) animals by western blotting and mass spectrometry showed reduction of paucimannose and complex-type glycans and dramatic increase of glucosylated oligomannose glycans. In addition, a significant amount of unusual terminally fucosylated N-glycans were found in agl-1(RNAi) animals. ER stress response was also provoked, leading to the accumulation of large amounts of triglucosylated free oligosaccharides (FOSs) (Glc3Man4-5GlcNAc1-2) in agl-1(RNAi) animals. Acceleration of ER-associated degradation in response to the accumulation of unfolded glycoproteins and insufficient interaction with calnexin/calreticulin in the ER lumen likely accounts for the increase of FOSs. Taken together, these studies in C. elegans demonstrate that decreased ER α-glucosidase I affects the entire N-glycan profile and induces chronic ER stress, which may contribute to the pathophysiology of CDG-IIb in humans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Glicoproteínas/metabolismo , Longevidade , alfa-Glucosidases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Cricetinae , Estresse do Retículo Endoplasmático , Glicosilação , Oligossacarídeos/metabolismo , Proteólise , RNA Interferente Pequeno/genética , alfa-Glucosidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA