Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol NMR ; 76(1-2): 39-47, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35305195

RESUMO

Recent advances in the field of protein structure determination using liquid-state NMR enable the elucidation of multi-state protein conformations that can provide insight into correlated and non-correlated protein dynamics at atomic resolution. So far, NMR-derived multi-state structures were typically evaluated by means of visual inspection of structure superpositions, target function values that quantify the violation of experimented restraints and root-mean-square deviations that quantify similarity between conformers. As an alternative or complementary approach, we present here the use of a recently introduced structural correlation measure, PDBcor, that quantifies the clustering of protein states as an additional measure for multi-state protein structure analysis. It can be used for various assays including the validation of experimental distance restraints, optimization of the number of protein states, estimation of protein state populations, identification of key distance restraints, NOE network analysis and semiquantitative analysis of the protein correlation network. We present applications for the final quality analysis stages of typical multi-state protein structure calculations.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas/química
2.
Structure ; 30(4): 646-652.e2, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34963060

RESUMO

Allostery and correlated motion are key elements linking protein dynamics with the mechanisms of action of proteins. Here, we present PDBCor, an automated and unbiased method for the detection and analysis of correlated motions from experimental multi-state protein structures. It uses torsion angle and distance statistics and does not require any structure superposition. Clustering of protein conformers allows us to extract correlations in the form of mutual information based on information theory. With PDBcor, we elucidated correlated motion in the WW domain of PIN1, the protein GB3, and the enzyme cyclophilin, in line with reported findings. Correlations extracted with PDBcor can be utilized in subsequent assays including nuclear magnetic resonance (NMR) multi-state structure optimization and validation. As a guide for the interpretation of PDBcor results, we provide a series of protein structure ensembles that exhibit different levels of correlation, including non-correlated, locally correlated, and globally correlated ensembles.


Assuntos
Proteínas , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteínas/química
3.
Nat Commun ; 13(1): 6232, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266302

RESUMO

Recent methodological advances in solution NMR allow the determination of multi-state protein structures and provide insights into structurally and dynamically correlated protein sites at atomic resolution. This is demonstrated in the present work for the well-studied PDZ2 domain of protein human tyrosine phosphatase 1E for which protein allostery had been predicted. Two-state protein structures were calculated for both the free form and in complex with the RA-GEF2 peptide using the exact nuclear Overhauser effect (eNOE) method. In the apo protein, an allosteric conformational selection step comprising almost 60% of the domain was detected with an "open" ligand welcoming state and a "closed" state that obstructs the binding site by changing the distance between the ß-sheet 2, α-helix 2, and sidechains of residues Lys38 and Lys72. The observed induced fit-type apo-holo structural rearrangements are in line with the previously published evolution-based analysis covering ~25% of the domain with only a partial overlap with the protein allostery of the open form. These presented structural studies highlight the presence of a dedicated highly optimized and complex dynamic interplay of the PDZ2 domain owed by the structure-dynamics landscape.


Assuntos
Domínios PDZ , Proteínas , Humanos , Ligantes , Ligação Proteica , Proteínas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Peptídeos/química , Tirosina/metabolismo
4.
Chem ; 7(1): 224-236, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33511302

RESUMO

Integral membrane proteins (IMPs) are biologically highly significant but challenging to study because they require maintaining a cellular lipid-like environment. Here, we explore the application of mass photometry (MP) to IMPs and membrane-mimetic systems at the single-particle level. We apply MP to amphipathic vehicles, such as detergents and amphipols, as well as to lipid and native nanodiscs, characterizing the particle size, sample purity, and heterogeneity. Using methods established for cryogenic electron microscopy, we eliminate detergent background, enabling high-resolution studies of membrane-protein structure and interactions. We find evidence that, when extracted from native membranes using native styrene-maleic acid nanodiscs, the potassium channel KcsA is present as a dimer of tetramers-in contrast to results obtained using detergent purification. Finally, using lipid nanodiscs, we show that MP can help distinguish between functional and non-functional nanodisc assemblies, as well as determine the critical factors for lipid nanodisc formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA