Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
New Phytol ; 237(3): 1024-1039, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35962608

RESUMO

Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.


Assuntos
Mirtilos Azuis (Planta) , Tetraploidia , Mirtilos Azuis (Planta)/genética , Padrões de Herança , Poliploidia , Cromossomos
2.
Am J Bot ; 109(10): 1596-1606, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109839

RESUMO

PREMISE: The true blueberries (Vaccinium sect. Cyanococcus; Ericaceae), endemic to North America, have been intensively studied for over a century. However, with species estimates ranging from nine to 24 and much confusion regarding species boundaries, this ecologically and economically valuable group remains inadequately understood at a basic evolutionary and taxonomic level. As a first step toward understanding the evolutionary history and taxonomy of this species complex, we present the first phylogenomic hypothesis of the known diploid blueberries. METHODS: We used flow cytometry to verify the ploidy of putative diploid taxa and a target-enrichment approach to obtain a genomic data set for phylogenetic analyses. RESULTS: Despite evidence of gene flow, we found that a primary phylogenetic signal is present. Monophyly for all morphospecies was recovered, with two notable exceptions: one sample of V. boreale was consistently nested in the V. myrtilloides clade and V. caesariense was nested in the V. fuscatum clade. One diploid taxon, Vaccinium pallidum, is implicated as having a homoploid hybrid origin. CONCLUSIONS: This foundational study represents the first attempt to elucidate evolutionary relationships of the true blueberries of North America with a phylogenomic approach and sets the stage for multiple avenues of future study such as a taxonomic revision of the group, the verification of a homoploid hybrid taxon, and the study of polyploid lineages within the context of a diploid phylogeny.


Assuntos
Mirtilos Azuis (Planta) , Vaccinium , Filogenia , Diploide , Poliploidia
3.
BMC Genomics ; 22(1): 483, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182921

RESUMO

BACKGROUND: Tripidium ravennae is a cold-hardy, diploid species in the sugarcane complex (Poaceae subtribe Saccharinae) with considerable potential as a genetic resource for developing improved bioenergy and ornamental grasses. An improved understanding of the genetic regulation of reproductive processes (e.g., floral induction, inflorescence development, and seed development) will enable future applications of precision breeding and gene editing of floral and seed development. In particular, the ability to silence reproductive processes would allow for developing seedless forms of valuable but potentially invasive plants. The objective of this research was to characterize the gene expression environment of reproductive development in T. ravennae. RESULTS: During the early phases of inflorescence development, multiple key canonical floral integrators and pathways were identified. Annotations of type II subfamily of MADS-box transcription factors, in particular, were over-represented in the GO enrichment analyses and tests for differential expression (FDR p-value < 0.05). The differential expression of floral integrators observed in the early phases of inflorescence development diminished prior to inflorescence determinacy regulation. Differential expression analysis did not identify many unique genes at mid-inflorescence development stages, though typical biological processes involved in plant growth and development expressed abundantly. The increase in inflorescence determinacy regulatory elements and putative homeotic floral development unigenes at mid-inflorescence development coincided with the expression of multiple meiosis annotations and multicellular organism developmental processes. Analysis of seed development identified multiple unigenes involved in oxidative-reductive processes. CONCLUSION: Reproduction in grasses is a dynamic system involving the sequential coordination of complex gene regulatory networks and developmental processes. This research identified differentially expressed transcripts associated with floral induction, inflorescence development, and seed development in T. ravennae. These results provide insights into the molecular regulation of reproductive development and provide a foundation for future investigations and analyses, including genome annotation, functional genomics characterization, gene family evolutionary studies, comparative genomics, and precision breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Poaceae , Perfilação da Expressão Gênica , Inflorescência , Melhoramento Vegetal
4.
PLoS Genet ; 12(5): e1006012, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168520

RESUMO

Allotetraploid cotton species are a vital source of spinnable fiber for textiles. The polyploid nature of the cotton genome raises many evolutionary questions as to the relationships between duplicated genomes. We describe the evolution of the cotton genome (SNPs and structural variants) with the greatly improved resolution of 34 deeply re-sequenced genomes. We also explore the evolution of homoeologous regions in the AT- and DT-genomes and especially the phenomenon of conversion between genomes. We did not find any compelling evidence for homoeologous conversion between genomes. These findings are very different from other recent reports of frequent conversion events between genomes. We also identified several distinct regions of the genome that have been introgressed between G. hirsutum and G. barbadense, which presumably resulted from breeding efforts targeting associated beneficial alleles. Finally, the genotypic data resulting from this study provides access to a wealth of diversity sorely needed in the narrow germplasm of cotton cultivars.


Assuntos
Evolução Molecular , Genoma de Planta , Gossypium/genética , Tetraploidia , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fibra de Algodão , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Poliploidia
5.
6.
Nature ; 492(7429): 423-7, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23257886

RESUMO

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


Assuntos
Evolução Biológica , Fibra de Algodão , Genoma de Planta/genética , Gossypium/genética , Poliploidia , Alelos , Cacau/genética , Cromossomos de Plantas/genética , Diploide , Duplicação Gênica/genética , Genes de Plantas/genética , Gossypium/classificação , Anotação de Sequência Molecular , Filogenia , Vitis/genética
7.
Plant Dis ; 99(5): 718-722, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-30699677

RESUMO

Breeding for disease resistance requires efficient techniques for screening large plant populations. Late blight (LB), caused by the oomycete Phytophthora infestans, is one of the most devastating diseases of tomato (Solanum lycopersicum) worldwide, and there is a great interest in developing cultivars with resistance to this pathogen. Screening for LB resistance is commonly conducted under field or greenhouse conditions using whole plants. In a previous study, we demonstrated correspondence between field and greenhouse screening of tomato for LB resistance. Here, we report the use of a detached-leaflet assay for such screening. Seventy-two genotypes from two tomato species, varying in degree of resistance and susceptibility to LB, were evaluated in two replicated experiments for response to LB in a detached-leaflet assay, and the results were compared with those previously obtained from field and greenhouse screening of the same genotypes. There were significant (P < 0.001) positive correlations between replications (average r = 0.75) and experiments (average r = 0.72), suggesting that the detached-leaflet experiments were consistent. Further, there were significant (P < 0.001) positive correlations between responses in the detached-leaflet assay and those from field (r = 0.82) and greenhouse screenings (r = 0.84), suggesting reliability of the detached-leaflet assay. The results indicate the utility of the detached-leaflet assay for evaluating tomato for LB resistance, which may facilitate screening of large breeding populations.

8.
BMC Genomics ; 15: 945, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25359292

RESUMO

BACKGROUND: Cotton (Gossypium spp.) is the largest producer of natural fibers for textile and is an important crop worldwide. Crop production is comprised primarily of G. hirsutum L., an allotetraploid. However, elite cultivars express very small amounts of variation due to the species monophyletic origin, domestication and further bottlenecks due to selection. Conversely, wild cotton species harbor extensive genetic diversity of prospective utility to improve many beneficial agronomic traits, fiber characteristics, and resistance to disease and drought. Introgression of traits from wild species can provide a natural way to incorporate advantageous traits through breeding to generate higher-producing cotton cultivars and more sustainable production systems. Interspecific introgression efforts by conventional methods are very time-consuming and costly, but can be expedited using marker-assisted selection. RESULTS: Using transcriptome sequencing we have developed the first gene-associated single nucleotide polymorphism (SNP) markers for wild cotton species G. tomentosum, G. mustelinum, G. armourianum and G. longicalyx. Markers were also developed for a secondary cultivated species G. barbadense cv. 3-79. A total of 62,832 non-redundant SNP markers were developed from the five wild species which can be utilized for interspecific germplasm introgression into cultivated G. hirsutum and are directly associated with genes. Over 500 of the G. barbadense markers have been validated by whole-genome radiation hybrid mapping. Overall 1,060 SNPs from the five different species have been screened and shown to produce acceptable genotyping assays. CONCLUSIONS: This large set of 62,832 SNPs relative to cultivated G. hirsutum will allow for the first high-density mapping of genes from five wild species that affect traits of interest, including beneficial agronomic and fiber characteristics. Upon mapping, the markers can be utilized for marker-assisted introgression of new germplasm into cultivated cotton and in subsequent breeding of agronomically adapted types, including cultivar development.


Assuntos
Cruzamento , Mapeamento Cromossômico , Genes de Plantas , Gossypium/genética , Polimorfismo de Nucleotídeo Único , Cromossomos de Plantas , Biologia Computacional , Cruzamentos Genéticos , Marcadores Genéticos , Genoma de Planta , Técnicas de Genotipagem , Reprodutibilidade dos Testes , Deleção de Sequência , Transcriptoma
9.
Biol Trace Elem Res ; 202(5): 2052-2061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37540448

RESUMO

This study was conducted to evaluate the effects of different doses of selenium (Se) from Sel-Plex© (selenium-enriched Saccharomyces cerevisiae yeast) supplement on the antioxidant status, the antibody titers against the foot-and-mouth disease virus, and the expression of interleukin-2 (IL-2) and interferon-γ (IFN-γ) genes in ewes during the hot season. Six ewes were kept at 25 °C and received basal diet (the negative control group), and 24 ewes were kept at 38 °C for 5 h per day and received no supplement (the positive control), 0.15, 0.30, and 0.45 mg Se/kg. Ewes in the positive control had higher (P<0.001) liver enzyme activity, malondialdehyde (MDA), and cortisol levels, and lower antibody titer than the negative control. The liver enzymes' lowest (P<0.001) activities were observed in ewes receiving 0.30 and 0.45 mg Se/kg. Ewes receiving 0.30 and 0.45 mg Se/kg had lower MDA levels than other treatments. Ewes receiving 0.30 and 0.45 mg Se/kg had higher (P<0.001) total antioxidant capacity levels than those receiving 0.15 mg Se/kg and the positive control. Se-supplemented groups had lower (P<0.001) relative expression of IL-2 and higher (P<0.04) expression of IFN-γ than the positive control. The antibody titer was the same in the positive control and the group receiving 0.15 mg Se/kg. Ewes fed a diet with 0.30 and 0.45 mg Se/kg had higher (P<0.011) antibody titer than the positive control. The Se supplementation can reverse the decrease of antioxidant capacity and immune function caused by heat stress, and 0.3 mg Se/kg from Sel-Plex©is the best dose.


Assuntos
Antioxidantes , Selênio , Animais , Ovinos , Feminino , Antioxidantes/farmacologia , Selênio/farmacologia , Selênio/fisiologia , Interleucina-2/genética , Interferon gama/genética , Estações do Ano , Suplementos Nutricionais , Dieta , Saccharomyces cerevisiae , Imunidade , Ração Animal/análise
10.
Genome ; 56(1): 61-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23379339

RESUMO

Quantitative trait loci (QTL) analyses in pepper are common for horticultural, disease resistance, and fruit quality traits; although none of the studies to date have used sequence-based markers associated with genes. In this study we measured plant architectural, phenological, and fruit quality traits in a pepper mapping population consisting of 92 recombinant inbred lines derived from a cross between Capsicum frutescens acc. 2814-6 and C. annuum var. NuMexRNAKY. Phenotypic measurements were correlated to loci in a high-density EST-based genetic map. In total, 96 QTL were identified for 38 traits, including 12 QTL associated with capsaicinoid levels. Twenty-one loci showed correlation among seemingly unrelated phenotypic categories, highlighting tight linkage or shared genetics between previously unassociated traits in pepper.


Assuntos
Capsaicina/análise , Capsicum/genética , Frutas/genética , Locos de Características Quantitativas , Capsicum/química , Cruzamentos Genéticos , Etiquetas de Sequências Expressas , Genes de Plantas , Endogamia , Fenótipo , Mapeamento Físico do Cromossomo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA