Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hum Brain Mapp ; 38(2): 599-616, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27726243

RESUMO

Total intracranial volume (TICV) is an essential covariate in brain volumetric analyses. The prevalent brain imaging software packages provide automatic TICV estimates. FreeSurfer and FSL estimate TICV using a scaling factor while SPM12 accumulates probabilities of brain tissues. None of the three provide explicit skull/CSF boundary (SCB) since it is challenging to distinguish these dark structures in a T1-weighted image. However, explicit SCB not only leads to a natural way of obtaining TICV (i.e., counting voxels inside the skull) but also allows sub-definition of TICV, for example, the posterior fossa volume (PFV). In this article, they proposed to use multi-atlas label fusion to obtain TICV and PFV simultaneously. The main contributions are: (1) TICV and PFV are simultaneously obtained with explicit SCB from a single T1-weighted image. (2) TICV and PFV labels are added to the widely used BrainCOLOR atlases. (3) Detailed mathematical derivation of non-local spatial STAPLE (NLSS) label fusion is presented. As the skull is clearly distinguished in CT images, we use a semi-manual procedure to obtain atlases with TICV and PFV labels using 20 subjects who both have a MR and CT scan. The proposed method provides simultaneous TICV and PFV estimation while achieving more accurate TICV estimation compared with FreeSurfer, FSL, SPM12, and the previously proposed STAPLE based approach. The newly developed TICV and PFV labels for the OASIS BrainCOLOR atlases provide acceptable performance, which enables simultaneous TICV and PFV estimation during whole brain segmentation. The NLSS method and the new atlases have been made freely available. Hum Brain Mapp 38:599-616, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador , Neuroimagem , Reconhecimento Automatizado de Padrão , Crânio/anatomia & histologia , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Modelos Estatísticos , Crânio/diagnóstico por imagem
2.
Neuroimage ; 59(1): 530-9, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-21839181

RESUMO

Labels that identify specific anatomical and functional structures within medical images are essential to the characterization of the relationship between structure and function in many scientific and clinical studies. Automated methods that allow for high throughput have not yet been developed for all anatomical targets or validated for exceptional anatomies, and manual labeling remains the gold standard in many cases. However, manual placement of labels within a large image volume such as that obtained using magnetic resonance imaging (MRI) is exceptionally challenging, resource intensive, and fraught with intra- and inter-rater variability. The use of statistical methods to combine labels produced by multiple raters has grown significantly in popularity, in part, because it is thought that by estimating and accounting for rater reliability estimates of the true labels will be more accurate. This paper demonstrates the performance of a class of these statistical label combination methodologies using real-world data contributed by minimally trained human raters. The consistency of the statistical estimates, the accuracy compared to the individual observations, and the variability of both the estimates and the individual observations with respect to the number of labels are presented. It is demonstrated that statistical fusion successfully combines label information using data from online (Internet-based) collaborations among minimally trained raters. This first successful demonstration of a statistically based approach using minimally trained raters opens numerous possibilities for very large scale efforts in collaboration. Extension and generalization of these technologies for new applications will certainly present fascinating areas for continuing research.


Assuntos
Mapeamento Encefálico/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Humanos , Internet , Imageamento por Ressonância Magnética , Variações Dependentes do Observador , Reprodutibilidade dos Testes
3.
Med Phys ; 39(10): 5981-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039636

RESUMO

PURPOSE: Malignant gliomas represent an aggressive class of central nervous system neoplasms. Correlation of interventional outcomes with tumor morphometry data necessitates 3D segmentation of tumors (typically based on magnetic resonance imaging). Expert delineation is the long-held gold standard for tumor segmentation, but is exceptionally resource intensive and subject to intrarater and inter-rater variability. Automated tumor segmentation algorithms have been demonstrated for a variety of imaging modalities and tumor phenotypes, but translation of these methods across clinical study designs is problematic given variation in image acquisition, tumor characteristics, segmentation objectives, and validation criteria. Herein, the authors demonstrate an alternative approach for high-throughput tumor segmentation using Internet-based, collaborative labeling. METHODS: In a study of 85 human raters and 98 tumor patients, raters were recruited from a general university campus population (i.e., no specific medical knowledge), given minimal training, and provided web-based tools to label MRI images based on 2D cross sections. The labeling goal was characterized as to extract the enhanced tumor cores on T1-weighted MRI and the bright abnormality on T2-weighted MRI. An experienced rater manually constructed the ground truth volumes of a randomly sampled subcohort of 48 tumor subjects (for both T1w and T2w). Raters' taskwise individual observations, as well as the volume wise truth estimates via statistical fusion method, were evaluated over the subjects having the ground truth. RESULTS: Individual raters were able to reliably characterize (with >0.8 dice similarity coefficient, DSC) the gadolinium-enhancing cores and extent of the edematous areas only slightly more than half of the time. Yet, human raters were efficient in terms of providing these highly variable segmentations (less than 20 s per slice). When statistical fusion was used to combine the results of seven raters per slice for all slices in the datasets, the 3D agreement of the fused results with expertly delineated segmentations was on par with the inter-rater reliability observed between experienced raters using traditional 3D tools (approximately 0.85 DSC). The cumulative time spent per tumor patient with the collaborative approach was equivalent to that with an experienced rater, but the collaborative approach could be achieved with less training time, fewer resources, and efficient parallelization. CONCLUSIONS: Hence, collaborative labeling is a promising technique with potentially wide applicability to cost-effective manual labeling of medical images.


Assuntos
Comportamento Cooperativo , Glioma/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Internet , Barreira Hematoencefálica/metabolismo , Interpretação Estatística de Dados , Edema/complicações , Glioma/complicações , Glioma/metabolismo , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética
4.
Med Image Anal ; 26(1): 82-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363845

RESUMO

We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270× speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas segmentation algorithms without using non-local information.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Bases de Dados Factuais , Humanos , Aumento da Imagem/métodos , Armazenamento e Recuperação da Informação/métodos , Imagem Multimodal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
5.
PLoS One ; 10(10): e0141671, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509450

RESUMO

OBJECTIVE: We described and validated a quantitative anatomical labeling protocol for extracting clinically relevant quantitative parameters for ventral hernias (VH) from routine computed tomography (CT) scans. This information was then used to predict the need for mesh bridge closure during ventral hernia repair (VHR). METHODS: A detailed anatomical labeling protocol was proposed to enable quantitative description of VH including shape, location, and surrounding environment (61 scans). Intra- and inter-rater reproducibilities were calculated for labeling on 18 and 10 clinically acquired CT scans, respectively. Preliminary clinical validation was performed by correlating 20 quantitative parameters derived from anatomical labeling with the requirement for mesh bridge closure at surgery (26 scans). Prediction of this clinical endpoint was compared with similar models fit on metrics from the semi-quantitative European Hernia Society Classification for Ventral Hernia (EHSCVH). RESULTS: High labeling reproducibilities were achieved for abdominal walls (±2 mm in mean surface distance), key anatomical landmarks (±5 mm in point distance), and hernia volumes (0.8 in Cohen's kappa). 9 out of 20 individual quantitative parameters of hernia properties were significantly different between patients who required mesh bridge closure versus those in whom fascial closure was achieved at the time of VHR (p<0.05). Regression models constructed by two to five metrics presented a prediction with 84.6% accuracy for bridge requirement with cross-validation; similar models constructed by EHSCVH variables yielded 76.9% accuracy. SIGNIFICANCE: Reproducibility was acceptable for this first formal presentation of a quantitative image labeling protocol for VH on abdominal CT. Labeling-derived metrics presented better prediction of the need for mesh bridge closure than the EHSCVH metrics. This effort is intended as the foundation for future outcomes studies attempting to optimize choice of surgical technique across different anatomical types of VH.


Assuntos
Hérnia Ventral/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Parede Abdominal/patologia , Parede Abdominal/cirurgia , Técnicas de Fechamento de Ferimentos Abdominais , Adulto , Idoso , Pontos de Referência Anatômicos , Feminino , Hérnia Ventral/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Reprodutibilidade dos Testes , Telas Cirúrgicas
6.
Proc SPIE Int Soc Opt Eng ; 94132015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25914504

RESUMO

Medical imaging plays a key role in guiding treatment of traumatic brain injury (TBI) and for diagnosing intracranial hemorrhage; most commonly rapid computed tomography (CT) imaging is performed. Outcomes for patients with TBI are variable and difficult to predict upon hospital admission. Quantitative outcome scales (e.g., the Marshall classification) have been proposed to grade TBI severity on CT, but such measures have had relatively low value in staging patients by prognosis. Herein, we examine a cohort of 1,003 subjects admitted for TBI and imaged clinically to identify potential prognostic metrics using a "big data" paradigm. For all patients, a brain scan was segmented with multi-atlas labeling, and intensity/volume/texture features were computed in a localized manner. In a 10-fold cross-validation approach, the explanatory value of the image-derived features is assessed for length of hospital stay (days), discharge disposition (five point scale from death to return home), and the Rancho Los Amigos functional outcome score (Rancho Score). Image-derived features increased the predictive R2 to 0.38 (from 0.18) for length of stay, to 0.51 (from 0.4) for discharge disposition, and to 0.31 (from 0.16) for Rancho Score (over models consisting only of non-imaging admission metrics, but including positive/negative radiological CT findings). This study demonstrates that high volume retrospective analysis of clinical imaging data can reveal imaging signatures with prognostic value. These targets are suited for follow-up validation and represent targets for future feature selection efforts. Moreover, the increase in prognostic value would improve staging for intervention assessment and provide more reliable guidance for patients.

7.
Med Image Anal ; 18(7): 1070-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25033470

RESUMO

Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally - fully neglecting the known, yet complex, anatomical relationships exhibited in the data. To address this problem, we propose a generalized statistical fusion framework using hierarchical models of rater performance. Building on the seminal work in statistical fusion, we reformulate the traditional rater performance model from a multi-tiered hierarchical perspective. The proposed approach provides a natural framework for leveraging known anatomical relationships and accurately modeling the types of errors that raters (or atlases) make within a hierarchically consistent formulation. Herein, the primary contributions of this manuscript are: (1) we provide a theoretical advancement to the statistical fusion framework that enables the simultaneous estimation of multiple (hierarchical) confusion matrices for each rater, (2) we highlight the amenability of the proposed hierarchical formulation to many of the state-of-the-art advancements to the statistical fusion framework, and (3) we demonstrate statistically significant improvement on both simulated and empirical data. Specifically, both theoretically and empirically, we show that the proposed hierarchical performance model provides substantial and significant accuracy benefits when applied to two disparate multi-atlas segmentation tasks: (1) 133 label whole-brain anatomy on structural MR, and (2) orbital anatomy on CT.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Método de Monte Carlo
8.
Proc SPIE Int Soc Opt Eng ; 9034: 90341E, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24817809

RESUMO

Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally - fully neglecting the known, yet complex, anatomical relationships exhibited in the data. To address this problem, we propose a generalized statistical fusion framework using hierarchical models of rater performance. Building on the seminal work in statistical fusion, we reformulate the traditional rater performance model from a multi-tiered hierarchical perspective. This new approach provides a natural framework for leveraging known anatomical relationships and accurately modeling the types of errors that raters (or atlases) make within a hierarchically consistent formulation. Herein, we describe several contributions. First, we derive a theoretical advancement to the statistical fusion framework that enables the simultaneous estimation of multiple (hierarchical) performance models within the statistical fusion context. Second, we demonstrate that the proposed hierarchical formulation is highly amenable to the state-of-the-art advancements that have been made to the statistical fusion framework. Lastly, in an empirical whole-brain segmentation task we demonstrate substantial qualitative and significant quantitative improvement in overall segmentation accuracy.

9.
Med Image Comput Comput Assist Interv ; 17(Pt 1): 364-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333139

RESUMO

Selective and iterative method for performance level estimation (SIMPLE) is a multi-atlas segmentation technique that integrates atlas selection and label fusion that has proven effective for radiotherapy planning. Herein, we revisit atlas selection and fusion techniques in the context of segmenting the spleen in metastatic liver cancer patients with possible splenomegaly using clinically acquired computed tomography (CT). We re-derive the SIMPLE algorithm in the context of the statistical literature, and show that the atlas selection criteria rest on newly presented principled likelihood models. We show that SIMPLE performance can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion approach to reduce the impact of correlated errors among selected atlases. In a study of 65 subjects, the spleen was segmented with median Dice similarity coefficient of 0.93 and a mean surface distance error of 2.2 mm.


Assuntos
Inteligência Artificial , Neoplasias Hepáticas/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Neoplasias Esplênicas/diagnóstico por imagem , Neoplasias Esplênicas/secundário , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Med Image Anal ; 18(3): 460-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24556080

RESUMO

The spinal cord is an essential and vulnerable component of the central nervous system. Differentiating and localizing the spinal cord internal structure (i.e., gray matter vs. white matter) is critical for assessment of therapeutic impacts and determining prognosis of relevant conditions. Fortunately, new magnetic resonance imaging (MRI) sequences enable clinical study of the in vivo spinal cord's internal structure. Yet, low contrast-to-noise ratio, artifacts, and imaging distortions have limited the applicability of tissue segmentation techniques pioneered elsewhere in the central nervous system. Additionally, due to the inter-subject variability exhibited on cervical MRI, typical deformable volumetric registrations perform poorly, limiting the applicability of a typical multi-atlas segmentation framework. Thus, to date, no automated algorithms have been presented for the spinal cord's internal structure. Herein, we present a novel slice-based groupwise registration framework for robustly segmenting cervical spinal cord MRI. Specifically, we provide a method for (1) pre-aligning the slice-based atlases into a groupwise-consistent space, (2) constructing a model of spinal cord variability, (3) projecting the target slice into the low-dimensional space using a model-specific registration cost function, and (4) estimating robust segmentation susing geodesically appropriate atlas information. Moreover, the proposed framework provides a natural mechanism for performing atlas selection and initializing the free model parameters in an informed manner. In a cross-validation experiment using 67 MR volumes of the cervical spinal cord, we demonstrate sub-millimetric accuracy, significant quantitative and qualitative improvement over comparable multi-atlas frameworks, and provide insight into the sensitivity of the associated model parameters.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Medula Espinal/patologia , Doenças da Coluna Vertebral/patologia , Técnica de Subtração , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Modelos Biológicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Med Phys ; 41(3): 031903, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24593721

RESUMO

PURPOSE: Expert manual labeling is the gold standard for image segmentation, but this process is difficult, time-consuming, and prone to inter-individual differences. While fully automated methods have successfully targeted many anatomies, automated methods have not yet been developed for numerous essential structures (e.g., the internal structure of the spinal cord as seen on magnetic resonance imaging). Collaborative labeling is a new paradigm that offers a robust alternative that may realize both the throughput of automation and the guidance of experts. Yet, distributing manual labeling expertise across individuals and sites introduces potential human factors concerns (e.g., training, software usability) and statistical considerations (e.g., fusion of information, assessment of confidence, bias) that must be further explored. During the labeling process, it is simple to ask raters to self-assess the confidence of their labels, but this is rarely done and has not been previously quantitatively studied. Herein, the authors explore the utility of self-assessment in relation to automated assessment of rater performance in the context of statistical fusion. METHODS: The authors conducted a study of 66 volumes manually labeled by 75 minimally trained human raters recruited from the university undergraduate population. Raters were given 15 min of training during which they were shown examples of correct segmentation, and the online segmentation tool was demonstrated. The volumes were labeled 2D slice-wise, and the slices were unordered. A self-assessed quality metric was produced by raters for each slice by marking a confidence bar superimposed on the slice. Volumes produced by both voting and statistical fusion algorithms were compared against a set of expert segmentations of the same volumes. RESULTS: Labels for 8825 distinct slices were obtained. Simple majority voting resulted in statistically poorer performance than voting weighted by self-assessed performance. Statistical fusion resulted in statistically indistinguishable performance from self-assessed weighted voting. The authors developed a new theoretical basis for using self-assessed performance in the framework of statistical fusion and demonstrated that the combined sources of information (both statistical assessment and self-assessment) yielded statistically significant improvement over the methods considered separately. CONCLUSIONS: The authors present the first systematic characterization of self-assessed performance in manual labeling. The authors demonstrate that self-assessment and statistical fusion yield similar, but complementary, benefits for label fusion. Finally, the authors present a new theoretical basis for combining self-assessments with statistical label fusion.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Automação , Humanos , Modelos Estatísticos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Software , Medula Espinal/patologia
12.
J Med Imaging (Bellingham) ; 1(2)2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25558466

RESUMO

Multi-atlas methods have been successful for brain segmentation, but their application to smaller anatomies remains relatively unexplored. We evaluate 7 statistical and voting-based label fusion algorithms (and 6 additional variants) to segment the optic nerves, eye globes and chiasm. For non-local STAPLE, we evaluate different intensity similarity measures (including mean square difference, locally normalized cross correlation, and a hybrid approach). Each algorithm is evaluated in terms of the Dice overlap and symmetric surface distance metrics. Finally, we evaluate refinement of label fusion results using a learning based correction method for consistent bias correction and Markov random field regularization. The multi-atlas labeling pipelines were evaluated on a cohort of 35 subjects including both healthy controls and patients. Across all three structures, NLSS with a mixed weighting type provided the most consistent results; for the optic nerve NLSS resulted in a median Dice similarity coefficient of 0.81, mean surface distance of 0.41 mm and Hausdorff distance 2.18 mm for the optic nerves. Joint label fusion resulted in slightly superior median performance for the optic nerves (0.82, 0.39 mm and 2.15 mm), but slightly worse on the globes. The fully automated multi-atlas labeling approach provides robust segmentations of orbital structures on MRI even in patients for whom significant atrophy (optic nerve head drusen) or inflammation (multiple sclerosis) is present.

13.
Proc SPIE Int Soc Opt Eng ; 9034: 903446, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24817808

RESUMO

Spleen segmentation on clinically acquired CT data is a challenging problem given the complicity and variability of abdominal anatomy. Multi-atlas segmentation is a potential method for robust estimation of spleen segmentations, but can be negatively impacted by registration errors. Although labeled atlases explicitly capture information related to feasible organ shapes, multi-atlas methods have largely used this information implicitly through registration. We propose to integrate a level set shape model into the traditional label fusion framework to create a shape-constrained multi-atlas segmentation framework. Briefly, we (1) adapt two alternative atlas-to-target registrations to obtain the loose bounds on the inner and outer boundaries of the spleen shape, (2) project the fusion estimate to registered shape models, and (3) convert the projected shape into shape priors. With the constraint of the shape prior, our proposed method offers a statistically significant improvement in spleen labeling accuracy with an increase in DSC by 0.06, a decrease in symmetric mean surface distance by 4.01 mm, and a decrease in symmetric Hausdorff surface distance by 23.21 mm when compared to a locally weighted vote (LWV) method.

14.
Proc SPIE Int Soc Opt Eng ; 9034: 90341G, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24817810

RESUMO

The optic nerve is a sensitive central nervous system structure, which plays a critical role in many devastating pathological conditions. Several methods have been proposed in recent years to segment the optic nerve automatically, but progress toward full automation has been limited. Multi-atlas methods have been successful for brain segmentation, but their application to smaller anatomies remains relatively unexplored. Herein we evaluate a framework for robust and fully automated segmentation of the optic nerves, eye globes and muscles. We employ a robust registration procedure for accurate registrations, variable voxel resolution and image field-of-view. We demonstrate the efficacy of an optimal combination of SyN registration and a recently proposed label fusion algorithm (Non-local Spatial STAPLE) that accounts for small-scale errors in registration correspondence. On a dataset containing 30 highly varying computed tomography (CT) images of the human brain, the optimal registration and label fusion pipeline resulted in a median Dice similarity coefficient of 0.77, symmetric mean surface distance error of 0.55 mm, symmetric Hausdorff distance error of 3.33 mm for the optic nerves. Simultaneously, we demonstrate the robustness of the optimal algorithm by segmenting the optic nerve structure in 316 CT scans obtained from 182 subjects from a thyroid eye disease (TED) patient population.

15.
J Med Imaging (Bellingham) ; 1(3): 034006, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26158064

RESUMO

The optic nerve (ON) plays a critical role in many devastating pathological conditions. Segmentation of the ON has the ability to provide understanding of anatomical development and progression of diseases of the ON. Recently, methods have been proposed to segment the ON but progress toward full automation has been limited. We optimize registration and fusion methods for a new multi-atlas framework for automated segmentation of the ONs, eye globes, and muscles on clinically acquired computed tomography (CT) data. Briefly, the multi-atlas approach consists of determining a region of interest within each scan using affine registration, followed by nonrigid registration on reduced field of view atlases, and performing statistical fusion on the results. We evaluate the robustness of the approach by segmenting the ON structure in 501 clinically acquired CT scan volumes obtained from 183 subjects from a thyroid eye disease patient population. A subset of 30 scan volumes was manually labeled to assess accuracy and guide method choice. Of the 18 compared methods, the ANTS Symmetric Normalization registration and nonlocal spatial simultaneous truth and performance level estimation statistical fusion resulted in the best overall performance, resulting in a median Dice similarity coefficient of 0.77, which is comparable with inter-rater (human) reproducibility at 0.73.

16.
Med Image Anal ; 17(2): 194-208, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23265798

RESUMO

Multi-atlas segmentation provides a general purpose, fully-automated approach for transferring spatial information from an existing dataset ("atlases") to a previously unseen context ("target") through image registration. The method to resolve voxelwise label conflicts between the registered atlases ("label fusion") has a substantial impact on segmentation quality. Ideally, statistical fusion algorithms (e.g., STAPLE) would result in accurate segmentations as they provide a framework to elegantly integrate models of rater performance. The accuracy of statistical fusion hinges upon accurately modeling the underlying process of how raters err. Despite success on human raters, current approaches inaccurately model multi-atlas behavior as they fail to seamlessly incorporate exogenous intensity information into the estimation process. As a result, locally weighted voting algorithms represent the de facto standard fusion approach in clinical applications. Moreover, regardless of the approach, fusion algorithms are generally dependent upon large atlas sets and highly accurate registration as they implicitly assume that the registered atlases form a collectively unbiased representation of the target. Herein, we propose a novel statistical fusion algorithm, Non-Local STAPLE (NLS). NLS reformulates the STAPLE framework from a non-local means perspective in order to learn what label an atlas would have observed, given perfect correspondence. Through this reformulation, NLS (1) seamlessly integrates intensity into the estimation process, (2) provides a theoretically consistent model of multi-atlas observation error, and (3) largely diminishes the need for large atlas sets and very high-quality registrations. We assess the sensitivity and optimality of the approach and demonstrate significant improvement in two empirical multi-atlas experiments.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Modelos Anatômicos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Proc SPIE Int Soc Opt Eng ; 86742013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24379940

RESUMO

Anatomical contexts (spatial labels) are critical for interpretation of medical imaging content. Numerous approaches have been devised for segmentation, query, and retrieval within the Picture Archive and Communication System (PACS) framework. To date, application-based methods for anatomical localization and tissue classification have yielded the most successful results, but these approaches typically rely upon the availability of standardized imaging sequences. With the ever expanding scope of PACS archives - including multiple imaging modalities, multiple image types within a modality, and multi-site efforts, it is becoming increasingly burdensome to devise a specific method for each data type. To address the challenge of generalizing segmentations from one modality to another, we consider multi-atlas segmentation to transfer label information from labeled T1-weighted MRI data to unlabeled B0 data collected in a diffusion tensor imaging (DTI) experiment. The label transfer approach is fully automated and enables a generalizable cross-modality segmentation method. Herein, we propose a multi-tier multi-atlas segmentation framework for the segmentation of previously unlabeled imaging modalities (e.g., B0 images for DTI analysis). We show that this approach can be used to construct informed structure-wise noise estimates for fractional anisotropy (FA) measurements of DTI. Although this label transfer methodology is demonstrated in the context of quality control of DTI images, the proposed framework is applicable to any application where the segmentation of unlabeled modalities is limited due to the current collection of available atlases.

18.
Med Phys ; 40(4): 043702, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23556928

RESUMO

PURPOSE: Multi-atlas segmentation has been shown to be highly robust and accurate across an extraordinary range of potential applications. However, it is limited to the segmentation of structures that are anatomically consistent across a large population of potential target subjects (i.e., multi-atlas segmentation is limited to "in-atlas" applications). Herein, the authors propose a technique to determine the likelihood that a multi-atlas segmentation estimate is representative of the problem at hand, and, therefore, identify anomalous regions that are not well represented within the atlases. METHODS: The authors derive a technique to estimate the out-of-atlas (OOA) likelihood for every voxel in the target image. These estimated likelihoods can be used to determine and localize the probability of an abnormality being present on the target image. RESULTS: Using a collection of manually labeled whole-brain datasets, the authors demonstrate the efficacy of the proposed framework on two distinct applications. First, the authors demonstrate the ability to accurately and robustly detect malignant gliomas in the human brain-an aggressive class of central nervous system neoplasms. Second, the authors demonstrate how this OOA likelihood estimation process can be used within a quality control context for diffusion tensor imaging datasets to detect large-scale imaging artifacts (e.g., aliasing and image shading). CONCLUSIONS: The proposed OOA likelihood estimation framework shows great promise for robust and rapid identification of brain abnormalities and imaging artifacts using only weak dependencies on anomaly morphometry and appearance. The authors envision that this approach would allow for application-specific algorithms to focus directly on regions of high OOA likelihood, which would (1) reduce the need for human intervention, and (2) reduce the propensity for false positives. Using the dual perspective, this technique would allow for algorithms to focus on regions of normal anatomy to ascertain image quality and adapt to image appearance characteristics.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Interpretação Estatística de Dados , Humanos , Funções Verossimilhança , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Proc SPIE Int Soc Opt Eng ; 8669: 86691L, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24478826

RESUMO

Labeling or segmentation of structures of interest on medical images plays an essential role in both clinical and scientific understanding of the biological etiology, progression, and recurrence of pathological disorders. Here, we focus on the optic nerve, a structure that plays a critical role in many devastating pathological conditions - including glaucoma, ischemic neuropathy, optic neuritis and multiple-sclerosis. Ideally, existing fully automated procedures would result in accurate and robust segmentation of the optic nerve anatomy. However, current segmentation procedures often require manual intervention due to anatomical and imaging variability. Herein, we propose a framework for robust and fully-automated segmentation of the optic nerve anatomy. First, we provide a robust registration procedure that results in consistent registrations, despite highly varying data in terms of voxel resolution and image field-of-view. Additionally, we demonstrate the efficacy of a recently proposed non-local label fusion algorithm that accounts for small scale errors in registration correspondence. On a dataset consisting of 31 highly varying computed tomography (CT) images of the human brain, we demonstrate that the proposed framework consistently results in accurate segmentations. In particular, we show (1) that the proposed registration procedure results in robust registrations of the optic nerve anatomy, and (2) that the non-local statistical fusion algorithm significantly outperforms several of the state-of-the-art label fusion algorithms.

20.
Proc SPIE Int Soc Opt Eng ; 8673: 867312, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24478827

RESUMO

Ventral hernias (VHs) are abnormal openings in the anterior abdominal wall that are common side effects of surgical intervention. Repair of VHs is the most commonly performed procedure by general surgeons worldwide, but VH repair outcomes are not particularly encouraging (with recurrence rates up to 43%). A variety of open and laparoscopic techniques are available for hernia repair, and the specific technique used is ultimately driven by surgeon preference and experience. Despite routine acquisition of computed tomography (CT) for VH patients, little quantitative information is available on which to guide selection of a particular approach and/or optimize patient-specific treatment. From anecdotal interviews, the success of VH repair procedures correlates with hernia size, location, and involvement of secondary structures. Herein, we propose an image labeling protocol to segment the anterior abdominal area to provide a geometric basis with which to derive biomarkers and evaluate treatment efficacy. Based on routine clinical CT data, we are able to identify inner and outer surfaces of the abdominal walls and the herniated volume. This is the first formal presentation of a protocol to quantify these structures on abdominal CT. The intra- and inter rater reproducibilities of this protocol are evaluated on 4 patients with suspected VH (3 patients were ultimately diagnosed with VH while 1 was not). Mean surfaces distances of less than 2mm were achieved for all structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA