Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Phys Chem Chem Phys ; 25(37): 25639-25653, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721171

RESUMO

In the present study, synchrotron-based X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) have been used to investigate the induced defect states in metal oxide nanomaterials. Specifically, two synthesis approaches have been followed to develop unique nano-sized peanut-shaped (N-ZnO) nanostructures and micron-sized hexagonal rods (M-ZnO). XANES analysis at the Zn K-edge revealed the presence of defect states with a divalent oxidation state of zinc (Zn2+) in a tetrahedral structure. Furthermore, XAS measurements performed at the Zn L3,2-edge and O K-edge confirm higher oxygen-related defects in M-ZnO, while N-ZnO appeared to have a higher concentration of surface defects due to size confinement. Moreover, the in-line XEOL and time dependent-XEOL measurements exposed the radiative excitonic recombination phenomena occurring in the band-tailing region as a function of absorption length, X-ray energy excitation, and time. Based on the chronology developed in the defect state improvement, a possible energy band diagram is proposed to accurately locate the defect states in the two systems. Furthermore, the increased absorption intensity at the Zn L3,2-edge and the O K-edge under the UV lamp suggests delayed recombination of electrons and holes, highlighting their potential use as photo catalysts. The photocatalytic activity degrading the rhodamine B dye established M-ZnO as a superior catalyst with a rapid degradation rate and significant mineralization. Overall, this work provides valuable insights into ZnO defect states and provides a foundation for efficient advanced materials for environmental or other optoelectronic applications.

2.
Epilepsy Behav ; 130: 108671, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381495

RESUMO

OBJECTIVES: To prospectively study the effectiveness and safety of clobazam as an add-on therapy in patients with epilepsy whose seizures are not adequately controlled with antiseizure medicine (ASM) monotherapy. METHODS: We conducted a prospective, observational study at 28 neurology outpatient clinics in India from June 2017 to October 2019. Consecutive patients with epilepsy (older than 3 years) with inadequate seizure control with ASM monotherapy were initiated on clobazam. Patients were followed up at 1, 3, 6, 9, and 12 months. Seizure control and adverse events were assessed through personal interviews and seizure diaries. RESULTS: Out of 475 eligible patients, data of 429 patients (men: 65.5%) were evaluated (46 excluded due to protocol deviations). The median age was 25 (range, 3-80 years) years and the median duration of epilepsy was 3 (0.1-30) years. The majority of patients had focal epilepsy (55.0%) and genetic generalized epilepsy (40.1%). The one-year follow-up was completed by 380 (88.5%) patients. At one-year follow-up, 317 (83.4%; N = 380) patients in the study remained seizure free. These 317 patients who were seizure free at 12 months comprised 73.9% of the evaluable population (N = 429). In 98.8% of patients, the primary reason for adding clobazam was inadequate control of seizures with treatment. During one-year follow-up, a total of 113 (22.6%) patients experienced at least one adverse event which included 103 (20.6%) patients who experienced 386 episodes of seizures. CONCLUSION: The study provides preliminary evidence that clobazam is effective and well-tolerated as add-on therapy for a period of one year among patients with epilepsy inadequately stabilized with monotherapy. TRIAL REGISTRATION NUMBER: CTRI/2017/12/010906.


Assuntos
Anticonvulsivantes , Epilepsia , Adulto , Anticonvulsivantes/efeitos adversos , Benzodiazepinas , Clobazam/uso terapêutico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Humanos , Masculino , Estudos Prospectivos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
3.
J Synchrotron Radiat ; 28(Pt 1): 240-246, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399574

RESUMO

In the present work, extended X-ray absorption fine-structure (EXAFS) investigations of Co69FexSi21-xB10 (x = 3, 5, 7) glassy ribbons were performed at the Co K-edge. The magnitude of the first peak of the Fourier transforms of the EXAFS signals is found to increase monotonically with increasing Si concentrations indicating the formation of the localized ordered structure at the atomic scale. The Co-Si coordination number (CN) increases at the expense of the CN of Co/Fe. Smaller interatomic distances are observed in the glassy phase compared with that in the crystalline phase which promotes the stability of the glassy phase. Calculations of the thermodynamic parameter (PHSS), cohesive energy (EC) and the atomic radius difference (δ) parameter show that the alloy composition Co69Fe3Si18B10 has a good glass-forming ability (GFA) with the highest CN of Si compared with other compositions. A linear correlation of CN with that of the GFA parameter (PHSS) exists and the CN also plays a crucial role in the GFA of the glassy alloys. This parameter should be considered in developing different GFA criteria.

4.
Phys Chem Chem Phys ; 23(2): 1601-1609, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33410440

RESUMO

The present work investigates the less explored thermoelectric properties of the n-type GaN semiconductor by combining both experimental and computational tools. The Seebeck coefficients of GaN epitaxial thin films were experimentally measured in the wide temperature range from 77 K to 650 K in steps of ∼10 K covering both low and high-temperature regimes as a function of the carrier concentration (2 × 1016, 2 × 1017, 4 × 1017 and 8 × 1017 cm-3). The measured Seebeck coefficient at room temperature was found to be highest (-374 µV K-1) at the lowest concentration of 4 × 1016 cm-3, and decreases in magnitude monotonically (-327.6 µV K-1, -295 µV K-1, -246 µV K-1 for 2 × 1017, 4 × 1017, 8 × 1017 cm-3, respectively) as the sample carrier concentration increases. The Seebeck coefficient remains negative in the entire temperature range under study indicating that electrons are the dominant carriers. To understand the temperature-dependent behaviour, we also carried out the electronic structure and transport coefficient calculations using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential and semiclassical Boltzmann transport theory implemented in WIEN2k and BoltzTraP code, respectively. The experimentally observed carrier concentrations were used in the calculations. The estimated results obtained under constant relaxation time approximations provide a very good agreement between the theoretical and experimental data of Seebeck coefficients in the temperature range from 260 to 625 K.

5.
Phys Chem Chem Phys ; 20(17): 12084-12096, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29676425

RESUMO

The interactions of energetic ions with multi-cation compounds and their consequences in terms of changes in the local electronic structure, which may facilitate intriguing hybridization between O 2p and metal d orbitals and magnetic ordering, are the subject of debate and require a deep understanding of energy transfer processes and magnetic exchange mechanisms. In this study, nanocrystals of ZnFe2O4 were exposed to O7+ ions with an energy of 100 MeV to understand, qualitatively and quantitatively, the metal-ligand field interactions, cation migration and magnetic exchange interactions by employing X-ray absorption fine structure measurements and X-ray magnetic circular dichroism to get deeper mechanistic insights. Nanosized zinc ferrite nanoparticles (NPs) with a size of ∼16 nm synthesized in the cubic spinel phase exhibited deterioration of the crystalline phase when 100 MeV O7+ ions passed through them. However, the size of these NPs remained almost the same. The behaviour of crystal deterioration is associated with the confinement of heat in this interaction. The energy confined inside the nanoparticles promotes cation redistribution as well as the modification of the local electronic structure. Prior to this interaction, almost 42% of Zn2+ ions occupied AO4 tetrahedra; however, this value increased to 63% after the interaction. An inverse effect was observed for metal ion occupancies in BO6 octahedra. The L-edge spectra of Fe and Zn reveal that the spin and valence states of the metal ions were not affected by this interaction. This effect is also supported by K-edge measurements for Fe and Zn. The t2g/eg intensity ratio in the O K-edge spectra decreased after this interaction, which is associated with detachment of Zn2+ ions from the lattice. The extent of hybridization, as estimated from the ratio of the post-edge to the pre-edge region of the O K-edge spectra, decreased after this interaction. The metal-oxygen and metal-metal bond lengths were modified as a result of this interaction, as determined from extended X-ray absorption fine structure measurements. These measurements further support the observation of cation migration from AO4 tetrahedra to AO6 octahedra and vice versa. The Fe L-edge magnetic circular dichroism spectra indicate that Fe3+ ions occupying sites in AO4 tetrahedra and BO6 octahedra exhibited antiferromagnetic-like ordering prior to this interaction. The NPs that interacted with energetic O ions displayed a different kind of magnetic ordering.

6.
J Radiol Prot ; 38(4): 1311-1320, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30198859

RESUMO

The present paper reports the structural, morphological and optical properties of nanophosphor Li3B7O12:Mn with an optimised dopant concentration of 0.25 mol% and its surface modification under the irradiation of 250 keV proton beams and gamma photons for ion fluence ranging from 1 × 1013 to 6.25 × 1015 ions cm-2 and doses from 100 mGy-100 Gy, respectively. This nanophosphor has been synthesised by the high temperature solid state reaction method. Its optical properties are characterised by optically stimulated luminescence (OSL) and thermo luminescence (TL) techniques. This nanophosphor is polycrystalline in nature with a grain size of 40-80 nm confirmed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The OSL decay and TL glow curve response of the proton beam irradiated samples exhibit significant intensity at a fluence of 2.5 × 1014 ions cm-2. Moreover, Li3B7O12:Mn displays a linear response for gamma doses in the range of 100 mGy-50 Gy. We have also investigated the reusability and reproducibility of this material. The above study demonstrates that Li3B7O12:Mn is a robust and promising candidate for medical proton dosimetry.


Assuntos
Nanotecnologia , Dosimetria por Luminescência Estimulada Opticamente , Compostos de Fósforo/síntese química , Boro , Lítio , Manganês , Oxigênio
7.
Phys Chem Chem Phys ; 19(7): 5163-5176, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28140411

RESUMO

In this communication, structural, microstructural, transport and magnetotransport properties are reported for La0.7Pb0.3MnO3/LaAlO3 (LPMO/LAO) manganite films having different thicknesses. All the films were irradiated with 200 MeV Ag+15 swift heavy ions (SHI). Films were grown using the sol-gel method by employing the acetate precursor route. Structural measurements were carried out using the X-ray diffraction (XRD) method at room temperature, while atomic force microscopy (AFM) was performed for the surface morphology. Temperature dependent resistivity under different applied magnetic fields for all the films shows metal to insulator transition at temperature TP. In addition to the metal to insulator transition at TP, the films also exhibit low temperature resistivity upturn behavior. Resistivity, TP and upturn behavior are highly influenced by the film thickness, applied magnetic field and irradiation. To understand the nature of charge transport for the low temperature resistivity behavior and metallic and insulating (semiconducting) regions, various models and mechanisms have been verified and the most suitable mechanism has been found for each region in the resistivity curves. Magnetoresistance (MR) is affected by temperature, film thickness and irradiation. MR behavior has been understood in terms of combined and separate contributions from grains and grain boundaries in the films.

8.
Phys Chem Chem Phys ; 19(9): 6887, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28205663

RESUMO

Correction for 'Charge transport mechanisms in sol-gel grown La0.7Pb0.3MnO3/LaAlO3 manganite films' by Eesh Vaghela et al., Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/c6cp07730g.

9.
Phys Chem Chem Phys ; 19(43): 29294-29304, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29071325

RESUMO

In this communication, we report results of the electrical transport properties across the interface of composites consisting of n-type LaMnO3-δ (LMO) and p-type La0.7Ca0.3MnO3 (LCMO) manganites grown on LaAlO3 (LAO) single crystalline substrates using low cost wet chemical solution deposition (CSD) and sophisticated, well-controlled dry chemical vapor deposition (CVD) chemical techniques. The XRD ϕ-scan studies reveal the single crystalline nature of both bilayered composites, with parallel epitaxial growth of LMO and LCMO layers onto the LAO substrate. The valence states of Mn ions in both layers of both composites were identified by performing X-ray photoelectron spectroscopy (XPS). The I-V characteristics of the LMO/LCMO interfaces show strong backward diode-like behavior at higher applied voltages well above the crossover voltage (VNB). Below VNB, the interfaces demonstrate normal diode-like characteristics throughout the studied temperature range. The electric field-induced modulation of the LMO/LCMO junction resistance of the interfaces has been observed. Electric field-dependent electroresistance (ER) modifications at different temperatures have also been studied. The electrical transport properties have been discussed in the context of various mechanisms, such as charge injection, tunneling, depletion region modification and thermal processes across the interface. The effects of structurally and chemically developed sharp interfaces between the LMO and LCMO layers on the transport properties of the presently studied bilayered thin film composites have been discussed on the basis of correlation between the physicochemical characterization and charge transport behavior. A comparison of different aspects of the transport properties has been presented in the context of the structural strain and crystallinity of the composites grown using both wet and dry chemical techniques.

10.
J Nanosci Nanotechnol ; 17(1): 300-05, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620826

RESUMO

This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.

11.
Nanotechnology ; 27(38): 385502, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27532479

RESUMO

In recent years, SnO2 nanoparticles (NPs) have been subjected to various modifications in order to improve their performance in sensing and other applications. Here, we report the synthesis of SnO2 NPs by microwave irradiation, and subsequent exposure to gamma (γ) radiation at different doses (0-150 kGy) to induce desirable physico-chemical properties. The irradiated samples were characterized by x-ray powder diffraction (XRD), transmission electron microscopy (TEM and HR-TEM), and photoluminescence (PL) to evaluate the effect of γ-ray irradiation on their morphology and microstructure. The results revealed that the bulk crystal structure remained unchanged after irradiation, while the existence of defects and a damaged over-layer have been confirmed by PL and HR-TEM respectively. The influence of γ-irradiation on the electrical and CO sensing characteristics was also investigated in the temperature range between 150 and 400 °C. γ-irradiated SnO2 NP based resistive sensors showed better CO sensing characteristics (i.e. higher response and lower working temperature) compared to non-irradiated SnO2. Upon optimizing the γ-ray dose irradiation level and working temperature, a ten-fold enhancement in the response to CO has been achieved (R/R 0 = 12 to 50 ppm of CO in air) in 50 kGy irradiated SnO2 NP based sensors operating at 150 °C. A possible mechanism for the enhanced sensing performance of γ-irradiated SnO2 NPs has been proposed.

12.
Phys Chem Chem Phys ; 18(4): 2468-80, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26701612

RESUMO

Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds.

13.
Phys Chem Chem Phys ; 17(35): 22900-10, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26266702

RESUMO

A unique strategy for scavenging free radicals in situ on exposure to gamma irradiation in polyethylene (PE) nanocomposites is presented. Blends of ultra-high molecular weight PE and linear low-density PE (PEB) and their nanocomposites with graphene (GPEB) were prepared by melt mixing to develop materials for biomedical implants. The effect of gamma irradiation on the microstructure and mechanical properties was systematically investigated. The neat blend and the nanocomposite were subjected to gamma-ray irradiation in order to improve the interfacial adhesion between PE and graphene sheets. Structural and thermal characterization revealed that irradiation induced crosslinking and increased the crystallinity of the polymer blend. The presence of graphene further enhanced the crystallinity via crosslinks between the polymer matrix and the filler on irradiation. Graphene was found to scavenge free radicals as confirmed by electron paramagnetic resonance spectroscopy. Irradiation of graphene-containing polymer composites resulted in the largest increase in modulus and hardness compared to either irradiation or addition of graphene to PEB alone. This study provides new insight into the role of graphene in polymer matrices during irradiation and suggests that irradiated graphene-polymer composites could emerge as promising materials for use as articulating surfaces in biomedical implants.


Assuntos
Sequestradores de Radicais Livres/química , Raios gama , Grafite/química , Nanocompostos/química , Polietilenos/química , Estrutura Molecular
14.
Phys Chem Chem Phys ; 17(37): 24427-37, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26339691

RESUMO

An investigation was carried out to understand the phase evolution and study the structural, morphological, optical and electrical properties of Co-Sb alloys fabricated by two different approaches: (a) thermal annealing and (b) ion-beam mixing followed by post annealing. The as-deposited and 100 MeV Ag ion beam irradiated Co/Sb bilayer thin films were subjected to thermal annealing from 200 to 400 °C for 1 hour. The Rutherford backscattering spectrometry (RBS) results showed partial mixing for the thermally annealed films and complete mixing for the irradiated and post annealed films at 400 °C. The XRD and RAMAN measurements indicated the formation of Co-Sb alloy, with ∼70% concentration of CoSb3 phase in the irradiated post annealed sample at 400 °C. The band gaps of the annealed and post irradiated annealed Co-Sb alloys were determined using UV-visible spectroscopy. Electrical and thermoelectric power measurements were performed in the temperature range of 300-420 K. It was observed that the alloys formed by ion-beam induced mixing exhibited higher electrical conductivity and thermoelectric power than the as-deposited and thermally annealed Co/Sb bilayer thin films.

15.
Sci Rep ; 13(1): 7595, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164980

RESUMO

Superparamagnetic N-doped graphene oxide (GO)- with ZnS nanowires was synthesized by a one-step hydrothermal method by doping dilute amounts of Ga, Cr, In, and Al ions for water treatment and biomedical applications. In these experiments, to enhance their properties, 2% of Ga3+, In3+, and or Al3+ were codoped along with 2% Cr ions in these ZnS nanowires. The nanocomposite with the composition, In0.02Cr0.02Zn0.96S, has better photocatalytic efficiency than other co-doped nanocomposites. The In (metalloids) and Cr (transition metal ion) are the best combinations to increase the magnetic properties which are beneficial for photocatalytic activity. Synthesized nanocomposite materials were characterized by several techniques such as X-ray diffraction, Field emission-scanning electron microscope (FESEM) with EDAX, vibrating sample magnetometer (VSM), UV-Vis, X-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy. The correlation of intriguing magnetic properties with their photocatalytic properties is also discussed. XPS was employed for the detection of surface defects, phase transformation, and the nature of chemical components present in the nanocomposites. The Frankel and substitutional defects have a direct impact on photocatalytic activity that was determined from the fluorescence (FL) spectroscopy. FL and XPS reveal that the Cr and In codoped composite has a higher percentage of defects hence its photocatalytic efficiency reaches 94.21%.

16.
Biomater Adv ; 155: 213679, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944450

RESUMO

Physiochemical properties of polycaprolactone-hydroxyapatite (PCL-HAp) composites were investigated in the pristine and after irradiation of γ rays (25, 50, 75, and 100 kGy). PCL-HAp composites were synthesized by solvent evaporation and characterized using spectroscopic methods as well as biological assays. The surface roughness (RMS) of the irradiated composite film (at 75 kGy) was 80 times higher than that of the pristine. Irradiation tailors the contact angle of the films from 77° to 90° (at 100 kGy). A decrease in particle size (at 100 kGy) of HAp nanorods in PCL-HAp composites film was observed. The XRD peak of PCL was slightly shifted from 21.2° to 21.7° (at 100 kGy) with the decrease in crystallite size. The peak intensity of the PCL and HAp altered on irradiation that was confirmed by FTIR and Raman analysis. Further, the bandgap of the irradiated film was lowered by 13 % (at 25 kGy). The luminescence intensity decreased due to the non-radiative process induced by the irradiation defects. All the samples possess hemocompatibility percentage of <10 % as per ASTM standards. At 75 kGy, fibroblast cell proliferation was higher than the pristine and other doses. The gamma-irradiated PCL-HAp composite films are potential candidates for tissue engineering applications.


Assuntos
Durapatita , Poliésteres , Durapatita/farmacologia , Durapatita/química , Poliésteres/farmacologia , Engenharia Tecidual , Análise Espectral/métodos
17.
J Nanosci Nanotechnol ; 11(7): 5850-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121619

RESUMO

The magnetic nanomaterials of CuxCo(1-x)Fe2O4 (x = 0.0, 0.5, and 1.0) were synthesized via autocombustion. The crystallite sizes of these materials were calculated from their X-ray diffraction peaks and were found to be within the range of 23-43 nm. The band near 575 cm(-1) that was observed in the Fourier transform infrared spectrum of these samples confirmed the presence of the ferrite phase. The conductivity versus temperature graph shows thermal hysteresis and exhibits the knee points at 475, 525, and 500 degrees C for copper ferrite, cobalt ferrite, and copper-cobalt ferrite, respectively. The M-H loops for these materials were traced using a vibrating sample magnetometer, and they indicated a significant increase in intrinsic coercivity due to the addition of Co2+ ions in the copper ferrite, while the remanence and saturation magnetization decreased. The ferrite materials that were used in this study exhibited good humidity sensitivity, but copper ferrite showed higher sensitivity compared to the other two materials.

18.
J Nanosci Nanotechnol ; 11(1): 386-90, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446461

RESUMO

Pure and mixed cobalt copper ferrites are of great interest due to their widespread application in electronics and medicine. We report on the electronic structure of a nanoferrite Cu(x)Co(1-x)Fe2O4 (0.0 < or = x < or = 1.0) system studied by X-ray absorption spectroscopy. These magnetic nanoferrites (average crystallite size approximately 31-43 nm) were synthesized by an auto combustion method and are characterized by high resolution X-ray diffraction and near edge X-ray absorption fine structure measurements at the O K and Co, Cu, and Fe L-edges. The O K-edge spectra suggest that there is a strong hybridization between O 2p and 3d electrons of Co, Cu and Fe cations and Fe L3,2-edge spectra indicate that Fe ions coexist in mixed valence states (Fe3+ and Fe2+) at tetrahedral and octahedral sites of the spinel structure. Copper and cobalt ions are distributed in the divalent state in octahedral sites of the spinel structure. The origin of high saturation magnetization and coercivity in cobalt-copper ferrites are explained in light of these results.


Assuntos
Cobalto/química , Cobre/química , Compostos Férricos/química , Compostos Ferrosos/química , Nanopartículas Metálicas/ultraestrutura , Nanopartículas Metálicas/química , Espectroscopia por Absorção de Raios X
19.
Phys Rev E ; 104(5-1): 054217, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942841

RESUMO

The classical surrogate data tests, which are used to differentiate linear noise processes from nonlinear processes, are not suitable for nonstationary time series. In this paper, we propose a surrogate data test that can be applied on both stationary time series as well as nonstationary time series with short-term fluctuations. The method is based on the idea of constructing a network from the time series, employing a generalized symbolic dynamics method introduced in this work, and using any one of the several easily computable network parameters as discriminating statistics. The construction of the network is designed to remove the long-term trends in the data automatically. The network-based test statistics pick up only the short-term variations, unlike the discriminating statistics of the traditional methods, which are influenced by nonstationary trends in the data. The method is tested on several systems generated by linear or nonlinear processes and with deterministic or stochastic trends, and in all cases it is found to be able to differentiate between linear stochastic processes and nonlinear processes quite accurately, especially in cases where the common methods would lead to false rejections of the null hypothesis due to nonstationarity being interpreted as nonlinearity. The method is also found to be robust to the presence of experimental or dynamical noise of a moderate level in an otherwise nonlinear system.

20.
J Phys Condens Matter ; 32(50)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32990272

RESUMO

The structural, magnetic and dielectric properties have been investigated in 3d-5dbased double perovskite Sr2FeIrO6thin films deposited by pulse laser deposition technique. To understand the effect of strain, epitaxial films are grown with varying thickness as well as on different substrates i.e., SrTiO3(100) and LaAlO3(100). The films with highest thickness are found to be more relaxed. Atomic force microscope images indicate all films are of good quality where grain sizes increase with increase in film thickness. X-ray absorption (XAS) spectroscopy measurements indicate a Ir5+charge state in present films while providing a detailed picture of hybridization between Fe/Ir-dand O-porbitals. The bulk antiferromagnetic transition is retained in films though the transition temperature shifts to higher temperature. Both dielectric constant (ϵr) and loss (tan δ) show change around the magnetic ordering temperatures of bulk Sr2FeIrO6indicating a close relation between dielectric and magnetic behaviors. A Maxwell-Wagner type relaxation is found to follow over whole frequency range down to low temperature in present film. On changing the substrate i.e., LaAlO3(100), theϵr(T) and (tan δ(T)) show almost similar behavior butϵrshows a higher value which is due to an increased strain coming from high mismatch of lattice parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA