Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nucleic Acids Res ; 42(4): 2591-601, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24285304

RESUMO

Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.


Assuntos
Clivagem do DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Técnicas de Inativação de Genes , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T , Engenharia Genética , Genômica/métodos , Células HEK293 , Humanos , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
2.
Blood ; 119(19): 4395-407, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22431569

RESUMO

The immunodeficiency disorder Wiskott-Aldrich syndrome (WAS) leads to life-threatening hematopoietic cell dysfunction. We used WAS protein (WASp)-deficient mice to analyze the in vivo efficacy of lentiviral (LV) vectors using either a viral-derived promoter, MND, or the human proximal WAS promoter (WS1.6) for human WASp expression. Transplantation of stem cells transduced with MND-huWASp LV resulted in sustained, endogenous levels of WASp in all hematopoietic lineages, progressive selection for WASp+ T, natural killer T and B cells, rescue of T-cell proliferation and cytokine production, and substantial restoration of marginal zone (MZ) B cells. In contrast, WS1.6-huWASp LV recipients exhibited subendogenous WASp expression in all cell types with only partial selection of WASp+ T cells and limited correction in MZ B-cell numbers. In parallel, WS1.6-huWASp LV recipients exhibited an altered B-cell compartment, including higher numbers of λ-light-chain+ naive B cells, development of self-reactive CD11c+FAS+ B cells, and evidence for spontaneous germinal center (GC) responses. These observations correlated with B-cell hyperactivity and increased titers of immunoglobulin (Ig)G2c autoantibodies, suggesting that partial gene correction may predispose toward autoimmunity. Our findings identify the advantages and disadvantages associated with each vector and suggest further clinical development of the MND-huWASp LV for a future clinical trial for WAS.


Assuntos
Linhagem da Célula/genética , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Animais , Células Cultivadas , Regulação da Expressão Gênica , Vetores Genéticos , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Resultado do Tratamento , Regulação para Cima/genética , Síndrome de Wiskott-Aldrich/patologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/fisiologia
3.
J Clin Invest ; 134(9)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502193

RESUMO

Chimeric antigen receptor (CAR) designs that incorporate pharmacologic control are desirable; however, designs suitable for clinical translation are needed. We designed a fully human, rapamycin-regulated drug product for targeting CD33+ tumors called dimerizaing agent-regulated immunoreceptor complex (DARIC33). T cell products demonstrated target-specific and rapamycin-dependent cytokine release, transcriptional responses, cytotoxicity, and in vivo antileukemic activity in the presence of as little as 1 nM rapamycin. Rapamycin withdrawal paused DARIC33-stimulated T cell effector functions, which were restored following reexposure to rapamycin, demonstrating reversible effector function control. While rapamycin-regulated DARIC33 T cells were highly sensitive to target antigen, CD34+ stem cell colony-forming capacity was not impacted. We benchmarked DARIC33 potency relative to CD19 CAR T cells to estimate a T cell dose for clinical testing. In addition, we integrated in vitro and preclinical in vivo drug concentration thresholds for off-on state transitions, as well as murine and human rapamycin pharmacokinetics, to estimate a clinically applicable rapamycin dosing schedule. A phase I DARIC33 trial has been initiated (PLAT-08, NCT05105152), with initial evidence of rapamycin-regulated T cell activation and antitumor impact. Our findings provide evidence that the DARIC platform exhibits sensitive regulation and potency needed for clinical application to other important immunotherapy targets.


Assuntos
Leucemia Mieloide Aguda , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Sirolimo , Linfócitos T , Animais , Feminino , Humanos , Masculino , Camundongos , Imunoterapia Adotiva , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Receptores de Antígenos Quiméricos/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Sirolimo/farmacologia , Sirolimo/administração & dosagem , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Blood ; 115(11): 2146-55, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20093406

RESUMO

The immunodeficiency disorder, X-linked agammaglobulinemia (XLA), results from mutations in the gene encoding Bruton tyrosine kinase (Btk). Btk is required for pre-B cell clonal expansion and B-cell antigen receptor signaling. XLA patients lack mature B cells and immunoglobulin and experience recurrent bacterial infections only partially mitigated by life-long antibody replacement therapy. In pursuit of definitive therapy for XLA, we tested ex vivo gene therapy using a lentiviral vector (LV) containing the immunoglobulin enhancer (Emu) and Igbeta (B29) minimal promoter to drive B lineage-specific human Btk expression in Btk/Tec(-/-) mice, a strain that reproduces the features of human XLA. After transplantation of EmuB29-Btk-LV-transduced stem cells, treated mice showed significant, albeit incomplete, rescue of mature B cells in the bone marrow, peripheral blood, spleen, and peritoneal cavity, and improved responses to T-independent and T-dependent antigens. LV-treated B cells exhibited enhanced B-cell antigen receptor signaling and an in vivo selective advantage in the peripheral versus central B-cell compartment. Secondary transplantation showed sustained Btk expression, viral integration, and partial functional responses, consistent with long-term stem cell marking; and serial transplantation revealed no evidence for cellular or systemic toxicity. These findings strongly support pursuit of B lineage-targeted LV gene therapy in human XLA.


Assuntos
Agamaglobulinemia/fisiopatologia , Agamaglobulinemia/terapia , Linfócitos B/fisiologia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Terapia Genética , Lentivirus/genética , Recuperação de Função Fisiológica/fisiologia , Tirosina Quinase da Agamaglobulinemia , Animais , Linfócitos B/citologia , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Antígenos CD79/genética , Linhagem Celular , Linhagem da Célula , Modelos Animais de Doenças , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/uso terapêutico
5.
Mol Ther ; 19(3): 515-25, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21139568

RESUMO

Sustained, targeted, high-level transgene expression in primary B lymphocytes may be useful for gene therapy in B cell disorders. We developed several candidate B-lineage predominant self-inactivating lentiviral vectors (LV) containing alternative enhancer/promoter elements including: the immunoglobulin ß (Igß) (B29) promoter combined with the immunoglobulin µ enhancer (EµB29); and the endogenous BTK promoter with or without Eµ (EµBtkp or Btkp). LV-driven enhanced green fluorescent protein (eGFP) reporter expression was evaluated in cell lines and primary cells derived from human or murine hematopoietic stem cells (HSC). In murine primary cells, EµB29 and EµBtkp LV-mediated high-level expression in immature and mature B cells compared with all other lineages. Expression increased with B cell maturation and was maintained in peripheral subsets. Expression in T and myeloid cells was much lower in percentage and intensity. Similarly, both EµB29 and EµBtkp LV exhibited high-level activity in human primary B cells. In contrast to EµB29, Btkp and EµBtkp LV also exhibited modest activity in myeloid cells, consistent with the expression profile of endogenous Bruton's tyrosine kinase (Btk). Notably, EµB29 and EµBtkp activity was superior in all expression models to an alternative, B-lineage targeted vector containing the EµS.CD19 enhancer/promoter. In summary, EµB29 and EµBtkp LV comprise efficient delivery platforms for gene expression in B-lineage cells.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/patologia , Terapia Genética , Vetores Genéticos/genética , Lentivirus/genética , Proteínas Tirosina Quinases , Tirosina Quinase da Agamaglobulinemia , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Animais , Linfócitos B/imunologia , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ordem dos Genes , Genes Reporter/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Vetores Genéticos/administração & dosagem , Células HEK293 , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Células Mieloides/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética
6.
J Immunol ; 182(12): 7370-80, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19494259

RESUMO

NKT cells comprise a separate T lineage expressing semi-invariant T cell receptors. Canonical invariant NKT (iNKT) cells specifically recognize lipid Ags presented by CD1d, a MHC class I-like molecule. iNKT cells function, in part, as initial responders to bacterial infection and play a role in immune surveillance and tumor rejection. The Wiskott-Aldrich Syndrome protein (WASp) serves as a crucial link between cellular stimuli and cytoskeletal rearrangements. Although we and others have identified a key role for WASp in homeostasis of T-regulatory and marginal zone B cells, little data exist regarding the role for WASp within the iNKT lineage. Analysis of WASp-expressing cell populations in heterozygous female WASp mice revealed a substantial selective advantage for WASp(+) vs WASp(-) iNKT cells. Although adult WASp-deficient (WASp(-/-)) mice had normal thymic and bone marrow iNKT numbers, we observed 2- to 3-fold reduction in the numbers of iNKT cells in the spleen and liver. This peripheral iNKT deficit is manifested, in part, due to defective iNKT homeostasis. WASp(-/-) iNKT cells exhibited reduced levels of integrin surface expression and decreased homing and/or retention within peripheral tissues in a competitive repopulation model. In addition, analysis of young mice showed that WASp is important for both maturation and egress of thymic iNKT cells. WASp(-/-) iNKT cells also exhibited a marked reduction in Ag-induced proliferation and cytokine production. Our findings highlight the crucial role for WASp in iNKT development, homeostasis, and activation, and identify iNKT dysfunction as an additional factor likely to contribute to the clinical features observed in WAS patients.


Assuntos
Homeostase/imunologia , Células T Matadoras Naturais/imunologia , Proteína da Síndrome de Wiskott-Aldrich/imunologia , Envelhecimento/fisiologia , Animais , Antígenos/imunologia , Antígeno CD11a/imunologia , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , Timo/imunologia , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
7.
JCI Insight ; 52019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039141

RESUMO

Chimeric antigen receptor (CAR) T cell therapies have achieved promising outcomes in several cancers, however more challenging oncology indications may necessitate advanced antigen receptor designs and functions. Here we describe a bipartite receptor system comprised of separate antigen targeting and signal transduction polypeptides, each containing an extracellular dimerization domain. We demonstrate that T cell activation remains antigen dependent but can only be achieved in the presence of a dimerizing drug, rapamycin. Studies performed in vitro and in xenograft mouse models illustrate equivalent to superior anti-tumor potency compared to currently used CAR designs, and at rapamycin concentrations well below immunosuppressive levels. We further show that the extracellular positioning of the dimerization domains enables the administration of recombinant re-targeting modules, potentially extending antigen targeting. Overall, this novel regulatable CAR design has exquisite drug sensitivity, provides robust anti-tumor responses, and is uniquely flexible for multiplex antigen targeting or retargeting, which may further assist the development of safe, potent and durable T cell therapeutics.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética , Proteínas Recombinantes de Fusão/genética , Animais , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Ativação Linfocitária , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Domínios Proteicos/genética , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Sirolimo/administração & dosagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Ther Methods Clin Dev ; 9: 347-357, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30038938

RESUMO

Targeted gene therapy strategies utilizing homology-driven repair (HDR) allow for greater control over transgene integration site, copy number, and expression-significant advantages over traditional vector-mediated gene therapy with random genome integration. However, the relatively low efficiency of HDR-based strategies limits their clinical application. Here, we used HDR to knock in a mutant dihydrofolate reductase (mDHFR) selection gene at the gene-edited CCR5 locus in primary human CD4+ T cells and selected for mDHFR-modified cells in the presence of methotrexate (MTX). Cells were transfected with CCR5-megaTAL nuclease mRNA and transduced with adeno-associated virus containing an mDHFR donor template flanked by CCR5 homology arms, leading to up to 40% targeted gene insertion. Clinically relevant concentrations of MTX led to a greater than 5-fold enrichment for mDHFR-modified cells, which maintained a diverse TCR repertoire over the course of expansion and drug selection. Our results demonstrate that mDHFR/MTX-based selection can be used to enrich for gene-modified T cells ex vivo, paving the way for analogous approaches to increase the percentage of HIV-resistant, autologous CD4+ T cells infused into HIV+ patients, and/or for in vivo selection of gene-edited T cells for the treatment of cancer.

9.
Mol Ther Methods Clin Dev ; 4: 192-203, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345004

RESUMO

Gene editing by homology-directed recombination (HDR) can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR) T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC) locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA) CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics.

10.
Mol Ther Nucleic Acids ; 5(8): e352, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27741222

RESUMO

A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection.

11.
Sci Transl Med ; 7(307): 307ra156, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424571

RESUMO

Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4(+) T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV)-mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP-modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34(+) cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties.


Assuntos
Desoxirribonucleases/metabolismo , Dependovirus/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptores CCR5/metabolismo , Adulto , Antígenos CD34/metabolismo , Complexo CD3/metabolismo , Células Cultivadas , Reparo do DNA , Loci Gênicos , Terapia Genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Edição de RNA/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo
12.
Exp Hematol ; 37(11): 1353-63, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19733207

RESUMO

OBJECTIVE: To study the role of antiplatelet antibodies in the thrombocytopenia of murine Wiskott-Aldrich syndrome (WAS). MATERIALS AND METHODS: A flow cytometric method was developed for detection of serum antiplatelet antibodies via their binding to intact target platelets lacking surface antibodies. Platelets were labeled with 5-chloromethylfluorescein diacetate (CMFDA) in order to track their clearance from the circulation. WASP(-)muMT(-/-) mice were generated by standard breeding methods. RESULTS: Serum antiplatelet antibodies were detected in approximately 40% of WASP(-) males. The mean level of reticulated platelets is significantly increased in these antibody(+) males. While WASP(-) males show an approximately 50% reduction in platelet counts, 5% to 10% show a more severe thrombocytopenia associated with increased reticulated platelets, suggesting the presence of clearance-inducing antiplatelet antibodies. In support of that inference, 90% of the latter mice show detectable serum antiplatelet antibodies. The antibodies are primarily immunoglobulin G, and are also detected in >30% of CD47(-/-) males. WASP(-)muMT(-/-) males, which demonstrate no serum- or platelet-associated antibodies, show a degree of thrombocytopenia similar to that of WASP(-) males. Their platelet clearance rates remain accelerated--more so in WASP(-)muMT(-/-) than WASP(+)muMT(-/-) recipients. CONCLUSIONS: These findings suggest that platelet WASP deficiency results in an increase in platelet clearance rates by two mechanisms: an antibody-independent mechanism that largely requires WASP deficiency in trans, and an antibody-dependent mechanism that does not. Both an increased incidence of antiplatelet antibodies and an increased susceptibility to their effects contribute to antibody-dependent clearance of WASP(-) platelets.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes/sangue , Plaquetas/imunologia , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Síndrome de Wiskott-Aldrich/sangue , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Medula Óssea/patologia , Antígeno CD47/genética , Antígeno CD47/fisiologia , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Proteínas Opsonizantes/imunologia , Fagocitose/imunologia , Fagocitose/fisiologia , Contagem de Plaquetas , Baço/patologia , Esplenomegalia/etiologia , Esplenomegalia/patologia , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/imunologia , Síndrome de Wiskott-Aldrich/patologia
13.
Nat Immunol ; 8(5): 522-31, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17401368

RESUMO

The cytokine thymic stromal lymphopoietin (TSLP) drives immature B cell development in vitro and may regulate T helper type 2 responses. Here we analyzed the involvement of TSLP in B cell development in vivo with a doxycycline-inducible, keratin 5-driven transgene encoding TSLP (K5-TSLP). K5-TSLP-transgenic mice given doxycycline showed an influx of immature B cells into the periphery, with population expansion of follicular mature B cells, near-complete loss of marginal zone and marginal zone precursor B cells, and 'preferential' population expansion of peritoneal B-1b B cells. These changes promoted cryoglobulin production and immune complex-mediated renal disease. Identical events occurred in mice without T cells, in alternative TSLP-transgenic models and in K5-TSLP-transgenic mice with undetectable systemic TSLP. These observations suggest that signals mediating localized TSLP expression may modulate systemic B cell development and promote humoral autoimmunity.


Assuntos
Subpopulações de Linfócitos B/citologia , Linfócitos B/fisiologia , Citocinas/metabolismo , Animais , Subpopulações de Linfócitos B/imunologia , Diferenciação Celular/imunologia , Camundongos , Camundongos Transgênicos , Linfopoietina do Estroma do Timo
14.
Blood ; 104(5): 1281-90, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15142874

RESUMO

X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacterial infections. Using Btk- and Tec-deficient mice (BtkTec(-/-)) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)-treated BtkTec(-/-) mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec(-/-) recipients. Mice engrafted with transduced hematopoietic cells exhibited rescue of both primary and peripheral B-lineage development, recovery of peritoneal B1 B cells, and correction of serum immunoglobulin M (IgM) and IgG(3) levels. Gene transfer also restored T-independent type II immune responses, and B-cell antigen receptor (BCR) proliferative responses. B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA.


Assuntos
Agamaglobulinemia/imunologia , Agamaglobulinemia/terapia , Linfócitos B/fisiologia , Terapia Genética/métodos , Proteínas Tirosina Quinases/genética , Tirosina Quinase da Agamaglobulinemia , Agamaglobulinemia/genética , Animais , Transplante de Medula Óssea , Divisão Celular/imunologia , Linhagem da Célula/imunologia , Cromossomos Humanos X , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Transferência de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Retroviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA