Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2308458120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38019861

RESUMO

Fe-N-C (iron-nitrogen-carbon) electrocatalysts have emerged as potential alternatives to precious metal-based materials for the oxygen reduction reaction (ORR). However, the structure of these materials under electrochemical conditions is not well understood, and their poor stability in acidic environments poses a formidable challenge for successful adoption in commercial fuel cells. To provide molecular-level insights into these complex phenomena, we combine periodic density functional theory (DFT) calculations, exhaustive treatment of coadsorption effects for ORR reaction intermediates, including O and OH, and comprehensive analysis of solvation stabilization effects to construct voltage-dependent ab initio thermodynamic phase diagrams that describe the in situ structure of the active sites. These structures are further linked to activity and stability descriptors that can be compared with experimental parameters such as the half-wave potential for ORR and the onset potential for carbon corrosion and CO2 evolution. The results indicate that pyridinic Fe sites at zigzag carbon edges, as well as other edge sites, exhibit high activity for ORR compared to sites in the bulk. However, edges neighboring the active sites are prone to instability via overoxidation and consequent site loss. The results suggest that it could be beneficial to synthesize Fe-N-C catalysts with small sizes and large perimeter edge lengths to enhance ORR activity, while voltage fluctuations should be limited during fuel cell operation to prevent carbon corrosion of overoxidized edges.

2.
Chemphyschem ; 25(13): e202400199, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38584141

RESUMO

Fe-N-C (iron-nitrogen-carbon) electrocatalysts have emerged as promising alternatives to precious metals for the oxygen reduction reaction (ORR), but they remain insufficiently stable for widespread adoption in fuel cell technologies. One plausible mechanism to explain this lack of stability, and the associated catalyst degradation, is oxidative attack on the catalyst surface by hydrogen peroxide, a non-selective byproduct of the ORR. In this work, we perform a detailed analysis of this degradation mechanism, using a combination of periodic Density Functional Theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations to probe the thermodynamics and kinetics of hydrogen peroxide activation on a series of candidate active sites for the Fe-N-C catalyst. The results demonstrate that carbon atoms neighbouring FeN4 active sites can be strongly over-oxidized via formation of hydroxyl or epoxy groups when hydrogen peroxide is present in the electrolyte. In most cases, the interaction between the over-oxidizing groups and the ORR reaction intermediates reduces the ORR activity, and we further propose that the over-oxidized sites are likely precursors to irreversible carbon corrosion and further catalyst deactivation.

3.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339679

RESUMO

Electrodeposited amorphous hydrated iridium oxide (IrOx) is a promising material for pH sensing due to its high sensitivity and the ease of fabrication. However, durability and variability continue to restrict the sensor's effectiveness. Variation in probe films can be seen in both performance and fabrication, but it has been found that performance variation can be controlled with potentiostatic conditioning (PC). To make proper use of this technique, the morphological and chemical changes affecting the conditioning process must be understood. Here, a thorough study of this material, after undergoing PC in a pH-sensing-relevant potential regime, was conducted by voltammetry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Fitting of XPS data was performed, guided by raw trends in survey scans, core orbitals, and valence spectra, both XPS and UPS. The findings indicate that the PC process can repeatably control and conform performance and surface bonding to desired calibrations and distributions, respectively; PC was able to reduce sensitivity and offset ranges to as low as ±0.7 mV/pH and ±0.008 V, respectively, and repeat bonding distributions over ~2 months of sample preparation. Both Ir/O atomic ratios (shifting from 4:1 to over 4.5:1) and fitted components assigned hydroxide or oxide states based on the literature (low-voltage spectra being almost entirely with suggested hydroxide components, and high-voltage spectra almost entirely with suggested oxide components) trend across the polarization range. Self-consistent valence, core orbital, and survey quantitative trends point to a likely mechanism of ligand conversion from hydroxide to oxide, suggesting that the conditioning process enforces specific state mixtures that include both theoretical Ir(III) and Ir(IV) species, and raising the conditioning potential alters the surface species from an assumed mixture of Ir species to more oxidized Ir species.

4.
J Am Chem Soc ; 145(48): 26222-26237, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983387

RESUMO

Mononuclear Fe ions ligated by nitrogen (FeNx) dispersed on nitrogen-doped carbon (Fe-N-C) serve as active centers for electrocatalytic O2 reduction and thermocatalytic aerobic oxidations. Despite their promise as replacements for precious metals in a variety of practical applications, such as fuel cells, the discovery of new Fe-N-C catalysts has relied primarily on empirical approaches. In this context, the development of quantitative structure-reactivity relationships and benchmarking of catalysts prepared by different synthetic routes and by different laboratories would be facilitated by the broader adoption of methods to quantify atomically dispersed FeNx active centers. In this study, we develop a kinetic probe reaction method that uses the aerobic oxidation of a model hydroquinone substrate to quantify the density of FeNx centers in Fe-N-C catalysts. The kinetic method is compared with low-temperature Mössbauer spectroscopy, CO pulse chemisorption, and electrochemical reductive stripping of NO derived from NO2- on a suite of Fe-N-C catalysts prepared by diverse routes and featuring either the exclusive presence of Fe as FeNx sites or the coexistence of aggregated Fe species in addition to FeNx. The FeNx site densities derived from the kinetic method correlate well with those obtained from CO pulse chemisorption and Mössbauer spectroscopy. The broad survey of Fe-N-C materials also reveals the presence of outliers and challenges associated with each site quantification approach. The kinetic method developed here does not require pretreatments that may alter active-site distributions or specialized equipment beyond reaction vessels and standard analytical instrumentation.

5.
Small ; 18(33): e2201750, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35871500

RESUMO

Gas diffusion layers (GDLs) play a crucial role in heat transfer and water management of cathode catalyst layers in polymer electrolyte fuel cells (PEFCs). Thermal and water gradients can accelerate electrocatalyst degradation and therefore the selection of GDLs can have a major influence on PEFC durability. Currently, the role of GDLs in electrocatalyst degradation is poorly studied. In this study, electrocatalyst accelerated stress test studies are performed on membrane electrode assemblies (MEAs) prepared using three most commonly used GDLs. The effect of GDLs on electrocatalyst degradation is evaluated in both nitrogen (non-reactive) and air (reactive) gas environments at 100% relative humidity. In situ electrochemical characterization and extensive physical characterization is performed to understand the subtle differences in electrocatalyst degradation and correlated to the use of different GDLs. Overall, no difference is observed in the electrocatalyst degradation due to GDLs based on polarization curves at the end of life. But interestingly, MEA with a cracked microporous layer (MPL) in the GDL exhibited a higher electrocatalyst loading loss, which resulted in a lower and more heterogeneous increase in the average electrocatalyst nanoparticle size.


Assuntos
Eletrólitos , Polímeros , Catálise , Difusão , Eletrodos , Eletrólitos/química , Gases , Polímeros/química , Água
6.
Chemphyschem ; 21(6): 469-475, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31945252

RESUMO

Kinetic isotope effect (KIE) was used to study the rate-determining step for oxygen reduction reaction (ORR) on dispersed Pt/C electrocatalyst and polycrystalline Pt (Pt-poly). KIE is defined as the ratio of the kinetic current measured in protonated electrolyte versus deuterated electrolyte, with KIE values larger than one indicating proton participation in the rate-determining step. The effect of poisoning anions on the platinum rate determining step is investigated by assessing the KIE in perchloric (non-poisoning) and sulfuric acid-based electrolytes. The kinetics currents were calculated using the Koutechy-Levich and Tafel analysis. A KIE of 1 was observed for Pt/C (with a 40 wt.% Pt loading) and Pt-poly, thus indicating that, on 40 wt. % Pt/C and Pt-poly, the rate determining step is proton independent.

7.
Chemphyschem ; 21(6): 468, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32175666

RESUMO

The front cover artwork is provided by the groups of Prof. Atanassov and Prof. Zenyuk (University of California Irvine, USA). The image shows rate-determining step of oxygen reduction reaction on platinum nanoparticle supported by carbon, which requires electron transfer but no proton. Read the full text of the Article at 10.1002/cphc.201901091.

8.
Chemphyschem ; 21(12): 1331-1339, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32337815

RESUMO

We investigated the oxygen reduction reaction (ORR) mechanism on Pt nanoparticles (NPs) dispersed on several carbon blacks with various physicochemical properties (i. e. specific surface ranging from 80 to 900 m2 g-1 , different graphitization degree, etc.). Using the kinetic isotope effect (KIE) along with various electrochemical characterizations, we determined that the rate determining step (RDS) of the ORR is a proton-independent step when the density of Pt NPs on the surface of the carbon support is high. Upon decrease of the density of Pt NPs on the surface, the RDS of the ORR starts involving a proton, as denoted by an increase of the KIE >1. This underlined the critical role played by the carbon support in the oxygen reduction reaction electrocatalysis by Pt supported on high surface area carbon.

9.
J Power Sources ; 412: 416-424, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30774187

RESUMO

The anode and cathode electrodes of a microbial fuel cell (MFC) stack, composed of 28 single MFCs, were used as the negative and positive electrodes, respectively of an internal self-charged supercapacitor. Particularly, carbon veil was used as the negative electrode and activated carbon with a Fe-based catalyst as the positive electrode. The red-ox reactions on the anode and cathode, self-charged these electrodes creating an internal electrochemical double layer capacitor. Galvanostatic discharges were performed at different current and time pulses. Supercapacitive-MFC (SC-MFC) was also tested at four different solution conductivities. SC-MFC had an equivalent series resistance (ESR) decreasing from 6.00â€¯Ω to 3.42â€¯Ω in four solutions with conductivity between 2.5 mScm-1 and 40 mScm-1. The ohmic resistance of the positive electrode corresponded to 75-80% of the overall ESR. The highest performance was achieved with a solution conductivity of 40 mS cm-1 and this was due to the positive electrode potential enhancement for the utilization of Fe-based catalysts. Maximum power was 36.9 mW (36.9 W m-3) that decreased with increasing pulse time. SC-MFC was subjected to 4520 cycles (8 days) with a pulse time of 5 s (ipulse 55 mA) and a self-recharging time of 150 s showing robust reproducibility.

10.
J Power Sources ; 425: 50-59, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31217667

RESUMO

In recent years, the microbial fuel cell (MFC) technology has drawn the attention of the scientific community due to its ability to produce clean energy and treat different types of waste at the same time. Often, expensive catalysts are required to facilitate the oxygen reduction reaction (ORR) and this hinders their large-scale commercialisation. In this work, a novel iron-based catalyst (Fe-STR) synthesised from iron salt and streptomycin as a nitrogen-rich organic precursor was chemically, morphologically and electrochemically studied. The kinetics of Fe-STR with and without being doped with carbon nanotubes (CNT) was initially screened through rotating disk electrode (RDE) analysis. Then, the catalysts were integrated into air-breathing cathodes and placed into ceramic-type MFCs continuously fed with human urine. The half-wave potential showed the following trend Fe-STR > Fe-STR-CNT ≫ AC, indicating better kinetics towards ORR in the case of Fe-STR. In terms of MFC performance, the results showed that cathodes containing Fe-based catalyst outperformed AC-based cathodes after 3 months of operation. The long-term test reported that Fe-STR-based cathodes allow MFCs to reach a stable power output of 104.5 ±â€¯0.0 µW cm-2, 74% higher than AC-based cathodes (60.4 ±â€¯3.9 µW cm-2). To the best of the Authors' knowledge, this power performance is the highest recorded from ceramic-type MFCs fed with human urine.

11.
J Chem Technol Biotechnol ; 94(7): 2098-2106, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31423040

RESUMO

BACKGROUND: In this work, a small-scale ceramic microbial fuel cell (MFC) with a novel type of metal-carbon-derived electrocatalyst containing iron and nicarbazin (Fe-NCB) was developed, to enhance electricity generation from neat human urine. Substrate oxidation at the anode provides energy for the separation of ions and recovery from urine without any chemical or external power additions. RESULTS: The catalyst was shown to be effective in clear electrolyte synthesis of high pH, compared with a range of carbon-based metal-free materials. Polarisation curves of tested MFCs showed up to 53% improvement (44.8 W m-3) in performance with the use of Fe-NCB catalyst.Catholyte production rate and pH directly increased with power performance while the conductivity decreased showing visually clear extracted liquid in the best-performing MFCs. CONCLUSIONS: Iron based catalyst Fe-NCB was shown to be a suitable electrocatalyst for the air-breathing cathode, improving power production from urine-fed MFCs. The results suggest electrochemical treatment through electro-osmotic drag while the electricity is produced and not consumed. Electro-osmotic production of clear catholyte is shown to extract water from urine against osmotic pressure. Recovering valuable resources from urine would help to transform energy intensive treatments to resource production, and will create opportunities for new technology development. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

12.
J Power Sources ; 378: 169-175, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29527091

RESUMO

Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e- transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm-2 and 10 mgcm-2. Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 µWcm-2 and 262 ± 4 µWcm-2 with catalyst loading of 0.1 mgcm-2 and 10 mgcm-2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

13.
J Power Sources ; 375: 11-20, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29398775

RESUMO

Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 µW cm-2 to 214 ± 5 µW cm-2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.

14.
Electrochim Acta ; 265: 56-64, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29527017

RESUMO

Iron aminoantipyrine (Fe-AAPyr), graphene nanosheets (GNSs) derived catalysts and their physical mixture Fe-AAPyr-GNS were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR) with the activated carbon (AC) as a baseline. Fe-AAPyr catalyst was prepared by Sacrificial Support Method (SSM) with silica as a template and aminoantipyrine (AAPyr) as the organic precursor. 3D-GNS was prepared using modified Hummers method technique. The Oxygen Reduction Reaction (ORR) activity of these catalysts at different loadings was investigated by using rotating ring disk (RRDE) electrode setup in the neutral electrolyte. The performance of the catalysts integrated into air-breathing cathode was also investigated. The co-presence of GNS (2 mg cm-2) and Fe-AAPyr (2 mg cm-2) catalyst within the air-breathing cathode resulted in the higher power generation recorded in MFC of 235 ±â€¯1 µW cm-2. Fe-AAPyr catalyst itself showed high performance (217 ±â€¯1 µW cm-2), higher compared to GNS (150 ±â€¯5 µW cm-2) while AC generated power of roughly 104 µW cm-2.

15.
Electrochim Acta ; 277: 127-135, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29970929

RESUMO

In this work, a platinum group metal-free (PGM-free) catalyst based on iron as transitional metal and Nicarbazin (NCB) as low cost organic precursor was synthesized using Sacrificial Support Method (SSM). The catalyst was then incorporated into a large area air-breathing cathode fabricated by pressing with a large diameter pellet die. The electrochemical tests in abiotic conditions revealed that after a couple of weeks of successful operation, the electrode experienced drop in performances in reason of electrolyte leakage, which was not an issue with the smaller electrodes. A decrease in the hydrophobic properties over time and a consequent cathode flooding was suspected to be the cause. On the other side, in the present work, for the first time, it was demonstrated the proof of principle and provided initial guidance for manufacturing MFC electrodes with large geometric areas. The tests in MFCs showed a maximum power density of 1.85 W m-2. The MFCs performances due to the addition of Fe-NCB were much higher compared to the iron-free material. A numerical model using Nernst-Monod and Butler-Volmer equations were used to predict the effect of electrolyte solution conductivity and distance anode-cathode on the overall MFC power output. Considering the existing conditions, the higher overall power predicted was 3.6 mW at 22.2 S m-1 and at inter-electrode distance of 1 cm.

16.
Solid State Ion ; 314: 141-148, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29456278

RESUMO

Quaternary ammonium poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membranes (AEMs) with topographically patterned surfaces were assessed in a microbial desalination cell (MDC) system. The MDC results with these QAPPO AEMs were benchmarked against a commercially available AEM. The MDC with the non-patterned QAPPO AEM (Q1) displayed the best desalination rate (a reduction of salinity by 53 ± 2.7%) and power generation (189 ± 5 mW m- 2) when compared against the commercially available AEM and the patterned AEMs. The enhanced performance with the Q1 AEM was attributed to its higher ionic conductivity and smaller thickness leading to a reduced area specific resistance. It is important to note that Real Pacific Ocean seawater and activated sludge were used into the desalination chamber and anode chamber respectively for the MDC - which mimicked realistic conditions. Although the non-patterned QAPPO AEM displayed better performance over the patterned QAPPO AEMs, it was observed that the anodic overpotential was smaller when the MDCs featured QAPPO AEMs with larger lateral feature sizes. The results from this study have important implications for the continuous improvements necessary for developing cheaper and better performing membranes in order to optimize the MDC.

17.
Energy (Oxf) ; 144: 1073-1079, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29456285

RESUMO

Power output limitation is one of the main challenges that needs to be addressed for full-scale applications of the Microbial Fuel Cell (MFC) technology. Previous studies have examined electrochemical performance of different cathode electrodes including the development of novel iron based electrocatalysts, however the long-term investigation into continuously operating systems is rare. This work aims to study the application of platinum group metals-free (PGM-free) catalysts integrated into an air-breathing cathode of the microbial fuel cell operating on activated sewage sludge and supplemented with acetate as the carbon energy source. The maximum power density up to 1.3 Wm-2 (54 Wm-3) obtained with iron aminoantipyrine (Fe-AAPyr) catalyst is the highest reported in this type of MFC and shows stability and improvement in long term operation when continuously operated on wastewater. It also investigates the ability of this catalyst to facilitate water extraction from the anode and electroosmotic production of clean catholyte. The electrochemical kinetic extraction of catholyte in the cathode chamber shows correlation with power performance and produces a newly synthesised solution with a high pH > 13, suggesting caustic content. This shows an active electrolytic treatment of wastewater by active ionic and pH splitting in an electricity producing MFC.

18.
Biochim Biophys Acta ; 1857(5): 612-620, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26751397

RESUMO

The development of 3D structures exploring the properties of nano-materials and biological molecules has been shown through the years as an effective path forward for the design of advanced bio-nano architectures for enzymatic fuel cells, photo-bio energy harvesting devices, nano-biosensors and bio-actuators and other bio-nano-interfacial architectures. In this study we demonstrate a scaffold design utilizing carbon nanotubes, deoxyribose nucleic acid (DNA) and a specific DNA binding transcription factor that allows for directed immobilization of a single enzyme. Functionalized carbon nanotubes were covalently bonded to a diazonium salt modified gold surface through carbodiimide chemistry creating a brush-type nanotube alignment. The aligned nanotubes created a highly ordered structure with high surface area that allowed for the attachment of a protein assembly through a designed DNA scaffold. The enzyme immobilization was controlled by a zinc finger (ZNF) protein domain that binds to a specific dsDNA sequence. ZNF 268 was genetically fused to the small laccase (SLAC) from Streptomyces coelicolor, an enzyme belonging to the family of multi-copper oxidases, and used to demonstrate the applicability of the developed approach. Analytical techniques such as X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and enzymatic activity analysis, allowed characterization at each stage of development of the bio-nano architecture. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Assuntos
Materiais Biomiméticos , DNA/química , Metabolismo Energético , Enzimas Imobilizadas/química , Nanotubos de Carbono/química , Bioengenharia/métodos , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Técnicas Biossensoriais/métodos , DNA/metabolismo , Enzimas Imobilizadas/metabolismo , Ouro/química , Humanos , Lacase/química , Lacase/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Streptomyces coelicolor , Propriedades de Superfície
19.
J Power Sources ; 366: 18-26, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29097833

RESUMO

M1-M2-N-C bimetallic catalysts with M1 as Fe and Co and M2 as Fe, Co, Ni and Mn were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR). The catalysts were prepared by Sacrificial Support Method in which silica was the template and aminoantipyrine (AAPyr) was the organic precursor. The electro-catalytic properties of these catalysts were investigated by using rotating ring disk (RRDE) electrode setup in neutral electrolyte. Fe-Mn-AAPyr outperformed Fe-AAPyr that showed higher performances compared to Fe-Co-AAPyr and Fe-Ni-AAPyr in terms of half-wave potential. In parallel, Fe-Co-AAPyr, Co-Mn-AAPyr and Co-Ni-AAPyr outperformed Co-AAPyr. The presence of Co within the catalyst contributed to high peroxide production not desired for efficient ORR. The catalytic capability of the catalysts integrated in air-breathing cathode was also verified. It was found that Co-based catalysts showed an improvement in performance by the addition of second metal compared to simple Co- AAPyr. Fe-based bimetallic materials didn't show improvement compared to Fe-AAPyr with the exception of Fe-Mn-AAPyr catalyst that had the highest performance recorded in this study with maximum power density of 221.8 ± 6.6 µWcm-2. Activated carbon (AC) was used as control and had the lowest performances in RRDE and achieved only 95.6 ± 5.8 µWcm-2 when tested in MFC.

20.
J Power Sources ; 356: 371-380, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28717262

RESUMO

Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA