Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 17(13): 1904-15, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18344557

RESUMO

Hyaluronidases are endoglycosidases that hydrolyze hyaluronan (HA), an abundant component of the extracellular matrix of vertebrate connective tissues. Six human hyaluronidase-related genes have been identified to date. Mutations in one of these genes cause a deficiency of hyaluronidase 1 (HYAL1) resulting in a lysosomal storage disorder, mucopolysaccharidosis (MPS) IX. We have characterized a mouse model of MPS IX and compared its phenotype with the human disease. The targeted Hyal1 allele in this model had a neomycin resistance cassette in exon 2 that replaced 753 bp of the coding region containing the predicted enzyme active site. As a result, Hyal1(-/-) animals had no detectable wild-type Hyal1 transcript, protein or serum activity. Hyal1 null animals were viable, fertile and showed no gross abnormalities at 1 year and 8 months of age. Histological studies of the knee joint showed a loss of proteoglycans occurring as early as 3 months that progressed with age. An increased number of chondrocytes displaying intense pericellular and/or cytoplasmic HA staining were detected in the epiphyseal and articular cartilage of null mice, demonstrating an accumulation of HA. Elevations of HA were not detected in the serum or non-skeletal tissues, indicating that osteoarthritis is the key disease feature in a Hyal1 deficiency. Hyal3 expression was elevated in Hyal1 null mice, suggesting that Hyal3 may compensate in HA degradation in non-skeletal tissues. Overall, the murine MPS IX model displays the key features of the human disease.


Assuntos
Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Mucopolissacaridoses/fisiopatologia , Osteoartrite/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Marcação de Genes , Glicosaminoglicanos/metabolismo , Humanos , Ácido Hialurônico/sangue , Articulações/patologia , Masculino , Camundongos , Camundongos Knockout , Mucopolissacaridoses/complicações , Mucopolissacaridoses/genética , Osteoartrite/complicações , Osteoartrite/genética , Osteoartrite/metabolismo , Fenótipo
2.
Mol Reprod Dev ; 77(9): 759-72, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20586096

RESUMO

The molecular mechanisms underlying sperm penetration of the physical barriers surrounding the oocyte have not been completely delineated. Although neutral-active or "reproductive" hyaluronidases (hyases), exemplified by Sperm Adhesion Molecule 1 (SPAM1), are thought to be responsible for hyaluronan digestion in the egg vestments and for sperm-zona binding, their roles in mouse sperm have been recently questioned. Here we report that acidic "somatic" Hyaluronidase 3 (HYAL3), a homolog of SPAM1 with 74.6% structural similarity, exists in two isoforms in human ( approximately 47 and approximately 55 kDa) and mouse ( approximately 44 and approximately 47 kDa) sperm, where it resides on the plasma membrane over the head and midpiece. Mouse isoforms are differentially distributed in the soluble (SAP), membrane (MBP), and acrosome-reacted (AR) fraction where they are most abundant. Comparisons of zymography of Hyal3 null and wild-type (WT) AR and MBP fractions show significant HYAL3 activity at pH 3 and 4, and less at pH 7. At pH 4, a second acid-active hyase band at approximately 57 kDa is present in the AR fraction. HYAL3 activity was confirmed using immunoprecipitated HYAL3 and spectrophotometry. In total proteins, hyase activity was higher at pH 6 than at 4, where Spam1 nulls had significantly (P < 0.01) diminished activity implicating an acidic optima for murine SPAM1. Although fully fertile, Hyal3 null sperm showed delayed cumulus penetration and reduced acrosomal exocytosis. HYAL3 is expressed in epididymal tissue/fluid, from where it is acquired by caudal mouse sperm in vitro. Our results reveal concerted activity of both neutral- and acid-active hyaluronidases in sperm.


Assuntos
Moléculas de Adesão Celular/metabolismo , Hialuronoglucosaminidase/metabolismo , Espermatozoides/enzimologia , Animais , Moléculas de Adesão Celular/fisiologia , Epididimo/enzimologia , Epididimo/fisiologia , Humanos , Hialuronoglucosaminidase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia
3.
Matrix Biol ; 27(8): 653-60, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18762256

RESUMO

Hyaluronidases are endoglycosidases that initiate the breakdown of hyaluronan (HA), an abundant component of the vertebrate extracellular matrix. In humans, six paralogous genes encoding hyaluronidase-like sequences have been identified on human chromosomes 3p21.3 (HYAL2-HYAL1-HYAL3) and 7q31.3 (SPAM1-HYAL4-HYALP1). Mutations in one of these genes, HYAL1, were reported in a patient with mucopolysaccharidosis (MPS) IX. Despite the broad distribution of HA, the HYAL1-deficient patient exhibited a mild phenotype, suggesting other hyaluronidase family members contribute to constitutive HA degradation. Hyal3 knockout (Hyal3-/-) mice were generated to determine if HYAL3 had a role in constitutive HA degradation. Hyal3-/- mice were viable, fertile, and exhibited no gross phenotypic changes. X-ray analysis, histological studies of joints, whole-body weights, organ weights and the serum HA levels of Hyal3-/- mice were normal. No evidence of glycosaminoglycan accumulation, including vacuolization, was identified in the Hyal3-/- tissues analyzed. Remarkably, the only difference identified in Hyal3-/- mice was a subtle change in the alveolar structure and extracellular matrix thickness in lung-tissue sections at 12-14 months-of-age. We conclude that HYAL3 does not play a major role in constitutive HA degradation.


Assuntos
Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/deficiência , Hialuronoglucosaminidase/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Hialuronoglucosaminidase/genética , Camundongos , Camundongos Knockout , Fenótipo , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA