Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Stroke ; 55(6): 1641-1649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572660

RESUMO

BACKGROUND: The current management of patients with stroke with intravenous thrombolysis and endovascular thrombectomy is effective only when it is timely performed on an appropriately selected but minor fraction of patients. The development of novel adjunctive therapy is highly desired to reduce morbidity and mortality with stroke. Since endothelial dysfunction is implicated in the pathogenesis of stroke and is featured with suppressed endothelial nitric oxide synthase (eNOS) with concomitant nitric oxide deficiency, restoring endothelial nitric oxide represents a promising approach to treating stroke injury. METHODS: This is a preclinical proof-of-concept study to determine the therapeutic effect of transcranial treatment with a low-power near-infrared laser in a mouse model of ischemic stroke. The laser treatment was performed before the middle cerebral artery occlusion with a filament. To determine the involvement of eNOS phosphorylation, unphosphorylatable eNOS S1176A knock-in mice were used. Each measurement was analyzed by a 2-way ANOVA to assess the effect of the treatment on cerebral blood flow with laser Doppler flowmetry, eNOS phosphorylation by immunoblot analysis, and stroke outcomes by infarct volumes and neurological deficits. RESULTS: Pretreatment with a 1064-nm laser at an irradiance of 50 mW/cm2 improved cerebral blood flow, eNOS phosphorylation, and stroke outcomes. CONCLUSIONS: Near-infrared II photobiomodulation could offer a noninvasive and low-risk adjunctive therapy for stroke injury. This new modality using a physical parameter merits further consideration to develop innovative therapies to prevent and treat a wide array of cardiovascular diseases.


Assuntos
Terapia com Luz de Baixa Intensidade , Óxido Nítrico Sintase Tipo III , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos , Fosforilação , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Acidente Vascular Cerebral , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média , Circulação Cerebrovascular/fisiologia , AVC Isquêmico/metabolismo , Modelos Animais de Doenças
2.
FASEB J ; 36(9): e22490, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35929438

RESUMO

There is solid evidence of the beneficial effect of photobiomodulation (PBM) with low-power near-infrared (NIR) light in the NIR-I window in increasing bioavailable nitric oxide (NO). However, it is not established whether this effect can be extended to NIR-II light, limiting broader applications of this therapeutic modality. Since we have demonstrated PBM with NIR laser in the NIR-II window, we determined the causal relationship between NIR-II irradiation and its specific biological effects on NO bioavailability. We analyzed the impact of NIR-II irradiation on NO release in cultured human endothelial cells using a NO-sensitive fluorescence probe and single-cell live imaging. Two distinct wavelengths of NIR-II laser (1064 and 1270 nm) and NIR-I (808 nm) at an irradiance of 10 mW/cm2 induced NO release from endothelial cells. These lasers also enhanced Akt phosphorylation at Ser 473, endothelial nitric oxide synthase (eNOS) phosphorylation at Ser 1177, and endothelial cell migration. Moreover, the NO release and phosphorylation of eNOS were abolished by inhibiting mitochondrial respiration, suggesting that Akt activation caused by NIR-II laser exposure involves mitochondrial retrograde signaling. Other inhibitors that inhibit known Akt activation pathways, including a specific inhibitor of PI3K, Src family PKC, did not affect this response. These two wavelengths of NIR-II laser induced no appreciable NO generation in cultured neuronal cells expressing neuronal NOS (nNOS). In short, NIR-II laser enhances bioavailable NO in endothelial cells. Since a hallmark of endothelial dysfunction is suppressed eNOS with concomitant NO deficiency, NIR-II laser technology could be broadly used to restore endothelial NO and treat or prevent cardiovascular diseases.


Assuntos
Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
FASEB J ; 36(10): e22521, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36052742

RESUMO

Immunotherapy, including immune checkpoint inhibitors, has revolutionized cancer treatment, but only a minor fraction of patients shows durable responses. A new approach to overcome this limitation is yet to be identified. Recently, we have shown that photobiomodulation (PBM) with near-infrared (NIR) light in the NIR-II window reduces oxidative stress and supports the proliferation of CD8+ T cells, suggesting that PBM with NIR-II light could augment anti-cancer immunity. Here, we report a novel approach to support tumor-infiltrating CD8+ T cells upon PBM with NIR-II laser with high tissue penetration depth. Brief treatments of a murine model of breast cancer with dual 1064 and 1270 nm lasers reduced the expression of the programmed cell death protein 1 (PD-1) in CD8+ T cells in a syngeneic mouse model of breast cancer. The direct effect of the NIR-II laser treatment on T cells was confirmed by the enhanced tumor growth delay by the adoptive transfer of laser-treated CD8+ T cells ex vivo against a model tumor antigen. We further demonstrated that specific NIR-II laser parameters augmented the effect of the immune checkpoint inhibitor on tumor growth. PBM with NIR-II light augments the efficacy of cancer immunotherapy by supporting CD8+ T cells. Unlike the current immunotherapy with risks of undesirable drug-drug interactions and severe adverse events, the laser is safe and low-cost. It can be broadly combined with other therapy without modification to achieve clinical significance. In addition, our study established a path to develop a novel laser-based therapy to treat cancer effectively.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Imunoterapia , Lasers , Camundongos , Neoplasias/terapia , Oxirredução
4.
Nitric Oxide ; 130: 58-68, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462596

RESUMO

Nitric oxide (NO) is a well-known gaseous mediator that maintains vascular homeostasis. Extensive evidence supports that a hallmark of endothelial dysfunction, which leads to cardiovascular diseases, is endothelial NO deficiency. Thus, restoring endothelial NO represents a promising approach to treating cardiovascular complications. Despite many therapeutic agents having been shown to augment NO bioavailability under various pathological conditions, success in resulting clinical trials has remained elusive. There is solid evidence of diverse beneficial effects of the treatment with low-power near-infrared (NIR) light, defined as photobiomodulation (PBM). Although the precise mechanisms of action of PBM are still elusive, recent studies consistently report that PBM improves endothelial dysfunction via increasing bioavailable NO in a dose-dependent manner and open a feasible path to the use of PBM for treating cardiovascular diseases via augmenting NO bioavailability. In particular, the use of NIR light in the NIR-II window (1000-1700 nm) for PBM, which has reduced scattering and minimal tissue absorption with the largest penetration depth, is emerging as a promising therapy. In this review, we update recent findings on PBM and NO.


Assuntos
Doenças Cardiovasculares , Terapia com Luz de Baixa Intensidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Óxido Nítrico , Transdução de Sinais
5.
Neurocrit Care ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030876

RESUMO

BACKGROUND: Intrahospital transportation (IHT) of patients with traumatic brain injury (TBI) is common and may have adverse consequences, incurring inherent risks. The data on the frequency and severity of clinical complications linked with IHT are contradictory, and there is no agreement on whether it is safe or potentially challenging for neurocritical care unit patients. Continuous intracranial pressure (ICP) monitoring is essential in neurointensive care. The role of ICP monitoring and management of cerebral autoregulation impairments in IHT of patients with severe TBI is underinvestigated. The purpose of this nonrandomized retrospective single-center study was to assess the dynamics of ICP and an improved pressure reactivity index (iPRx) as a measure of autoregulation during IHT. METHODS: Seventy-seven men and fourteen women with severe TBI admitted in 2012-2022 with a mean age of 33.2 ± 5.2 years were studied. ICP and arterial pressure were invasively monitored, and cerebral perfusion pressure and iPRx were calculated from the measured parameters. All patients were subjected to dynamic helical computed tomography angiography using a 64-slice scanner Philips Ingenuity computed tomography scan 1-2 days after TBI. Statistical analysis of all results was done using a paired t-test, and p was preset at < 0.05. The logistic regression analysis was performed for cerebral ischemia development dependent on intracranial hypertension and cerebrovascular reactivity. RESULTS: IHT led to an increase in ICP in all the patients, especially during vertical movement in an elevator (maximum 75.2 mm Hg). During the horizontal transportation on the floor, ICP remained increased (p < 0.05). The mean ICP during IHT was significantly higher (26.1 ± 13.5 mm Hg, p < 0.001) than that before the IHT (19.9 ± 5.3 mm Hg). The mean iPRx after and before IHT was 0.52 ± 0.04 and 0.23 ± 0.14, respectively (p < 0.001). CONCLUSIONS: Both horizontal and vertical transportation causes a significant increase in ICP and iPRx in patients with severe TBI, potentially leading to the outcome worsening.

6.
Adv Exp Med Biol ; 1395: 3-7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527605

RESUMO

Traumatic brain injury (TBI) leads to cerebral microvascular dysfunction and cerebral ischemia. Endothelial nitric oxide synthase (eNOS) is a key regulator of vascular homeostasis. We aimed to assess the role of eNOS in cerebral blood flow (CBF) changes after TBI. Moderate TBI was induced in eNOS knockout (KO) and wild-type (WT) mice (8 per group). Cerebral microvascular tone, microvascular CBF (mCBF) and tissue oxygenation (NADH) were measured by two-photon laser scanning microscopy (2PLSM) before and 1 h, 1 day and 3 days after TBI. Cerebrovascular reactivity (CVR) was evaluated by the hypercapnia test. Laser Doppler cortical flux (cLDF) was simultaneously measured in the perilesional area. One hr after TBI, cLDF was 59.4 ± 8.2% and 60.3 ± 9.1% from the baseline (p < 0.05) in WT and eNOS KO, respectively. 2PLSM showed decreased arteriolar diameter, the number of functioning capillaries, mCBF and tissue oxygenation (p < 0.05). At 1 day, cLDF increased to 65.2 ± 6.4% in the WT group, while it decreased to 56.1 ± 7.2% in the eNOS KO mice. 2PLSM revealed a further decrease in the number of functioning capillaries, mCBF, and oxygen supply which was slightly milder in WT mice (p < 0.05 from the baseline). On the third day after TBI, cLDF increased to 72 ± 5.2% in the WT, while it stayed the same in the eNOS KO group (55.9 ± 6.4%, p < 0.05 from the WT). 2PLSM showed reduction in arterioles with vasospasm, increase in the number of functioning capillaries, and improvement in mCBF and tissue oxygen supply in WT, while no significant changes were observed in eNOS KO (p < 0.05). CVR was impaired in both groups 1 h after TBI, and improved by the third day in the WT, while staying impaired in eNOS KO. In the subacute TBI period, the significance of eNOS in maintaining cerebral microcirculation and oxygen supply increases with time after the injury.


Assuntos
Lesões Encefálicas Traumáticas , Óxido Nítrico Sintase Tipo III , Animais , Camundongos , Microcirculação , Óxido Nítrico Sintase Tipo III/genética , Circulação Cerebrovascular/fisiologia , Camundongos Knockout , Oxigênio , Óxido Nítrico
7.
Molecules ; 24(9)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058815

RESUMO

c-Jun N-terminal kinase (JNK) is activated by various brain insults and is implicated in neuronal injury triggered by reperfusion-induced oxidative stress. Some JNK inhibitors demonstrated neuroprotective potential in various models, including cerebral ischemia/reperfusion injury. The objective of the present work was to study the neuroprotective activity of a new specific JNK inhibitor, IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt), in the model of global cerebral ischemia (GCI) in rats compared with citicoline (cytidine-5'-diphosphocholine), a drug approved for the treatment of acute ischemic stroke and to search for pleiotropic mechanisms of neuroprotective effects of IQ-1S. The experiments were performed in a rat model of ischemic stroke with three-vessel occlusion (model of 3VO) affecting the brachiocephalic artery, the left subclavian artery, and the left common carotid artery. After 7-min episode of GCI in rats, 25% of animals died, whereas survived animals had severe neurological deficit at days 1, 3, and 5 after GCI. At day 5 after GCI, we observing massive loss of pyramidal neurons in the hippocampal CA1 area, increase in lipid peroxidation products in the brain tissue, and decrease in local cerebral blood flow (LCBF) in the parietal cortex. Moreover, blood hyperviscosity syndrome and endothelial dysfunction were found after GCI. Administration of IQ-1S (intragastrically at a dose 50 mg/kg daily for 5 days) was associated with neuroprotective effect comparable with the effect of citicoline (intraperitoneal at a dose of 500 mg/kg, daily for 5 days).The neuroprotective effect was accompanied by a decrease in the number of animals with severe neurological deficit, an increase in the number of animals with moderate degree of neurological deficit compared with control GCI group, and an increase in the number of unaltered neurons in the hippocampal CA1 area along with a significant decrease in the number of neurons with irreversible morphological damage. In rats with IQ-1S administration, the LCBF was significantly higher (by 60%) compared with that in the GCI control. Treatment with IQ-1S also decreases blood viscosity and endothelial dysfunction. A concentration-dependent decrease (IC50 = 0.8 ± 0.3 µM) of tone in isolated carotid arterial rings constricted with phenylephrine was observed after IQ-1S application in vitro. We also found that IQ-1S decreased the intensity of the lipid peroxidation in the brain tissue in rats with GCI. 2.2-Diphenyl-1-picrylhydrazyl scavenging for IQ-1S in acetonitrile and acetone exceeded the corresponding values for ionol, a known antioxidant. Overall, these results suggest that the neuroprotective properties of IQ-1S may be mediated by improvement of cerebral microcirculation due to the enhanced vasorelaxation, beneficial effects on blood viscosity, attenuation of the endothelial dysfunction, and antioxidant/antiradical IQ-1S activity.


Assuntos
Isquemia Encefálica/prevenção & controle , Citidina Difosfato Colina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Oximas/administração & dosagem , Quinoxalinas/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Animais , Isquemia Encefálica/metabolismo , Circulação Cerebrovascular , Citidina Difosfato Colina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Oximas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Resultado do Tratamento
8.
FASEB J ; 31(2): 761-770, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27836986

RESUMO

Endothelial thrombomodulin (TM) regulates coagulation and inflammation via several mechanisms, including production of activated protein C (APC). Recombinant APC and soluble fragments of TM (sTM) have been tested in settings associated with insufficiency of the endogenous TM/APC pathway, such as sepsis. We previously designed a fusion protein of TM [single-chain variable fragment antibody (scFv)/TM] targeted to red blood cells (RBCs) to improve pharmacokinetics and antithrombotic effects without increasing bleeding. Here, scFv/TM was studied in mouse models of systemic inflammation and ischemia-reperfusion injury. Injected concomitantly with or before endotoxin, scFv/TM provided more potent protection against liver injury and release of pathological mediators than sTM, showing similar efficacy at up to 50-fold lower doses. scFv/TM provided protection when injected after endotoxin, whereas sTM did not, and augmented APC production by thrombin ∼50-fold more than sTM. However, scFv/TM injected after endotoxin did not reduce thrombin/antithrombin complexes; nor did antibodies that block APC anticoagulant activity suppress the prophylactic anti-inflammatory effect of scFv/TM. Therefore, similar to endogenous TM, RBC-anchored scFv/TM activates several protective pathways. Finally, scFv/TM was more effective at reducing cerebral infarct volume and alleviated neurological deficits than sTM after cerebral ischemia/reperfusion injury. These results indicate that RBC-targeted scFv/TM exerts multifaceted cytoprotective effects and may find utility in systemic and focal inflammatory and ischemic disorders.-Carnemolla, R., Villa, C. H., Greineder, C. F., Zaitseva, S., Patel, K. R., Kowalska, M. A., Atochin, D. N., Cines, D. B., Siegel, D. L., Esmon, C. T., Muzykantov, V. R. Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury.


Assuntos
Endotoxemia/prevenção & controle , Eritrócitos/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Trombomodulina/administração & dosagem , Trombomodulina/uso terapêutico , Animais , Inflamação/tratamento farmacológico , Masculino , Proteínas de Fusão de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Trombomodulina/química
9.
J Biol Chem ; 287(38): 32124-35, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22815476

RESUMO

Physiological levels of H(2)S exert neuroprotective effects, whereas high concentrations of H(2)S may cause neurotoxicity in part via activation of NMDAR. To characterize the neuroprotective effects of combination of exogenous H(2)S and NMDAR antagonism, we synthesized a novel H(2)S-releasing NMDAR antagonist N-((1r,3R,5S,7r)-3,5-dimethyladamantan-1-yl)-4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzamide (S-memantine) and examined its effects in vitro and in vivo. S-memantine was synthesized by chemically combining a slow releasing H(2)S donor 4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzoic acid (ACS48) with a NMDAR antagonist memantine. S-memantine increased intracellular sulfide levels in human neuroblastoma cells (SH-SY5Y) 10-fold as high as that was achieved by ACS48. Incubation with S-memantine after reoxygenation following oxygen and glucose deprivation (OGD) protected SH-SY5Y cells and murine primary cortical neurons more markedly than did ACS48 or memantine. Glutamate-induced intracellular calcium accumulation in primary cortical neurons were aggravated by sodium sulfide (Na(2)S) or ACS48, but suppressed by memantine and S-memantine. S-memantine prevented glutamate-induced glutathione depletion in SH-SY5Y cells more markedly than did Na(2)S or ACS48. Administration of S-memantine after global cerebral ischemia and reperfusion more robustly decreased cerebral infarct volume and improved survival and neurological function of mice than did ACS48 or memantine. These results suggest that an H(2)S-releasing NMDAR antagonist derivative S-memantine prevents ischemic neuronal death, providing a novel therapeutic strategy for ischemic brain injury.


Assuntos
Lesões Encefálicas/prevenção & controle , Isquemia Encefálica/tratamento farmacológico , Sulfeto de Hidrogênio/química , Neurônios/patologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Isquemia Encefálica/patologia , Morte Celular , Linhagem Celular Tumoral , Células Cultivadas , Desenho de Fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glucose/metabolismo , Glutationa/química , Humanos , Isquemia , Masculino , Memantina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Químicos , Oxigênio/química , Traumatismo por Reperfusão
10.
Biochem Biophys Res Commun ; 431(2): 284-90, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23291238

RESUMO

Phosphorylation of endothelial nitric oxide synthase (eNOS) is an important regulator of its enzymatic activity. We generated knockin mice expressing phosphomimetic (SD) and unphosphorylatable (SA) eNOS mutations at S1176 to study the role of eNOS phosphorylation. The single amino acid SA mutation is associated with hypertension and decreased vascular reactivity, while the SD mutation results in increased basal and stimulated endothelial NO production. In addition to these vascular effects, modulation of the S1176 phosphorylation site resulted in unanticipated effects on metabolism. The eNOS SA mutation results in insulin resistance, hyperinsulinemia, adiposity, and increased weight gain on high fat. In contrast, the eNOS SD mutation is associated with decreased insulin levels and resistance to high fat-induced weight gain. These results demonstrate the importance of eNOS in regulation of insulin sensitivity, energy metabolism, and bodyweight regulation, and suggest eNOS phosphorylation as a novel target for the treatment of obesity and insulin resistance.


Assuntos
Adiposidade/fisiologia , Resistência à Insulina/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Serina/metabolismo , Adiposidade/genética , Animais , Pressão Sanguínea , Técnicas de Introdução de Genes , Glucose/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Serina/genética , Resistência Vascular , Aumento de Peso/genética
11.
Biomedicines ; 11(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979693

RESUMO

Activation of c-Jun N-terminal kinases (JNKs) is involved in myocardial injury, left ventricular remodeling (LV), and heart failure (HF) after myocardial infarction (MI). The aim of this research was to evaluate the effects of a selective JNK inhibitor, 11H-indeno [1,2-b]quinoxalin-11-one oxime (IQ-1), on myocardial injury and acute myocardial ischemia/reperfusion (I/R) in adult male Wistar rats. Intraperitoneal administration of IQ-1 (25 mg/kg daily for 5 days) resulted in a significant decrease in myocardial infarct size on day 5 after MI. On day 60 after MI, a significant (2.6-fold) decrease in LV scar size, a 2.2-fold decrease in the size of the LV cavity, a 2.9-fold decrease in the area of mature connective tissue, and a 1.7-fold decrease in connective tissue in the interventricular septum were observed compared with the control group. The improved contractile function of the heart resulted in a significant (33%) increase in stroke size, a 40% increase in cardiac output, a 12% increase in LV systolic pressure, a 28% increase in the LV maximum rate of pressure rise, a 45% increase in the LV maximum rate of pressure drop, a 29% increase in the contractility index, a 14% increase in aortic pressure, a 2.7-fold decrease in LV end-diastolic pressure, and a 4.2-fold decrease in LV minimum pressure. We conclude that IQ-1 has cardioprotective activity and reduces the severity of HF after MI.

12.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37630972

RESUMO

The activation of c-Jun N-terminal kinase (JNK) plays an important role in stroke outcomes. Tryptanthrin-6-oxime (TRYP-Ox) is reported to have high affinity for JNK and anti-inflammatory activity and may be of interest as a promising neuroprotective agent. The aim of this study was to investigate the neuroprotective effects of TRYP-Ox in a rat model of transient focal cerebral ischemia (FCI), which involved intraluminal occlusion of the left middle cerebral artery (MCA) for 1 h. Animals in the experimental group were administered intraperitoneal injections of TRYP-Ox 30 min before reperfusion and 23 and 47 h after FCI. Neurological status was assessed 4, 24, and 48 h following FCI onset. Treatment with 5 and 10 mg/kg of TRYP-Ox decreased mean scores of neurological deficits by 35-49 and 46-67% at 24 and 48 h, respectively. At these doses, TRYP-Ox decreased the infarction size by 28-31% at 48 h after FCI. TRYP-Ox (10 mg/kg) reduced the content of interleukin (IL) 1ß and tumor necrosis factor (TNF) in the ischemic core area of the MCA region by 33% and 38%, respectively, and attenuated cerebral edema by 11% in the left hemisphere, which was affected by infarction, and by 6% in the right, contralateral hemisphere 24 h after FCI. TRYP-Ox reduced c-Jun phosphorylation in the MCA pool at 1 h after reperfusion. TRYP-Ox was predicted to have high blood-brain barrier permeability using various calculated descriptors and binary classification trees. Indeed, reactive oxidant production was significantly lower in the brain homogenates from rats treated with TRYP-Ox versus that in control animals. Our data suggest that the neuroprotective activity of TRYP-Ox may be due to the ability of this compound to inhibit JNK and exhibit anti-inflammatory and antioxidant activity. Thus, TRYP-Ox may be considered a promising neuroprotective agent that potentially could be used for the development of new treatment strategies in cerebral ischemia.

13.
J Cereb Blood Flow Metab ; 42(8): 1410-1424, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35296173

RESUMO

Mitochondrial and glycolytic energy pathways regulate the vascular functions. Aging impairs the cerebrovascular function and increases the risk of stroke and cognitive dysfunction. The goal of our study is to characterize the impact of aging on brain microvascular energetics. We measured the oxygen consumption and extracellular acidification rates of freshly isolated brain microvessels (BMVs) from young (2-4 months) and aged (20-22 months) C57Bl/6 male mice. Cellular ATP production in BMVs was predominantly dependent on oxidative phosphorylation (OXPHOS) with glucose as the preferred energy substrate. Aged BMVs exhibit lower ATP production rate with diminished OXPHOS and glycolytic rate accompanied by increased utilization of glutamine. Impairments of glycolysis displayed by aged BMVs included reduced compensatory glycolysis whereas impairments of mitochondrial respiration involved reduction of spare respiratory capacity and proton leak. Aged BMVs showed reduced levels of key glycolysis proteins including glucose transporter 1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 but normal lactate dehydrogenase activity. Mitochondrial protein levels were mostly unchanged whereas citrate synthase activity was reduced, and glutamate dehydrogenase was increased in aged BMVs. Thus, for the first time, we identified the dominant role of mitochondria in bioenergetics of BMVs and the alterations of the energy pathways that make the aged BMVs vulnerable to injury.


Assuntos
Metabolismo Energético , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Envelhecimento , Animais , Encéfalo/metabolismo , Glicólise/fisiologia , Masculino , Camundongos , Consumo de Oxigênio
14.
Stroke ; 42(8): 2302-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21700940

RESUMO

BACKGROUND AND PURPOSE: Delayed paraplegia remains a devastating complication after ischemic spinal cord injury associated with aortic surgery and trauma. Although apoptosis has been implicated in the pathogenesis of delayed neurodegeneration, mechanisms responsible for the delayed paraplegia remain incompletely understood. The aim of this study was to elucidate the role of apoptosis in delayed motor neuron degeneration after spinal cord ischemia. METHODS: Mice were subjected to spinal cord ischemia induced by occlusion of the aortic arch and left subclavian artery for 5 or 9 minutes. Motor function in the hind limb was evaluated up to 72 hours after spinal cord ischemia. Histological studies were performed to detect caspase-3 activation, glial activation, and motor neuron survival in the serial spinal cord sections. To investigate the impact of caspase-3 activation on spinal cord ischemia, outcome of the spinal cord ischemia was examined in mice deficient for caspase-3. RESULTS: In wild-type mice, 9 minutes of spinal cord ischemia caused immediate paraplegia, whereas 5 minutes of ischemia caused delayed paraplegia. Delayed paraplegia after 5 minutes of spinal cord ischemia was associated with histological evidence of caspase-3 activation, reactive astrogliosis, microglial activation, and motor neuron loss starting at approximately 24 to 48 hours after spinal cord ischemia. Caspase-3 deficiency prevented delayed paraplegia and motor neuron loss after 5 minutes of spinal cord ischemia, but not immediate paraplegia after 9 minutes of ischemia. CONCLUSIONS: The present results suggest that caspase-3 activation is required for delayed paraplegia and motor neuron degeneration after spinal cord ischemia.


Assuntos
Caspase 3/metabolismo , Neurônios Motores/metabolismo , Paraplegia/metabolismo , Isquemia do Cordão Espinal/metabolismo , Animais , Apoptose/fisiologia , Caspase 3/genética , Sobrevivência Celular , Camundongos , Camundongos Knockout , Neurônios Motores/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Paraplegia/etiologia , Paraplegia/patologia , Isquemia do Cordão Espinal/complicações , Isquemia do Cordão Espinal/patologia
15.
Am J Physiol Heart Circ Physiol ; 301(5): H2093-101, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21856905

RESUMO

Insulin resistance (IR) and systemic hypertension are independently associated with heart failure. We reported previously that nitric oxide synthase 3 (NOS3) has a beneficial effect on left ventricular (LV) remodeling and function after pressure-overload in mice. The aim of our study was to investigate the interaction of IR and NOS3 in pressure-overload-induced LV remodeling and dysfunction. Wild-type (WT) and NOS3-deficient (NOS3(-/-)) mice were fed either a standard diet (SD) or a high-fat diet (HFD) to induce IR. After 9 days of diet, mice underwent transverse aortic constriction (TAC). LV structure and function were assessed serially using echocardiography. Cardiomyocytes were isolated, and levels of oxidative stress were evaluated using 2',7'-dichlorodihydrofluorescein diacetate. Cardiac mitochondria were isolated, and mitochondrial respiration and ATP production were measured. TAC induced LV remodeling and dysfunction in all mice. The TAC-induced decrease in LV function was greater in SD-fed NOS3(-/-) mice than in SD-fed WT mice. In contrast, HFD-fed NOS3(-/-) developed less LV remodeling and dysfunction and had better survival than did HFD-fed WT mice. Seven days after TAC, oxidative stress levels were lower in cardiomyocytes from HFD-fed NOS3(-/-) than in those from HFD-fed WT. N(ω)-nitro-L-arginine methyl ester and mitochondrial inhibitors (rotenone and 2-thenoyltrifluoroacetone) decreased oxidative stress levels in cardiomyocytes from HFD-fed WT mice. Mitochondrial respiration was altered in NOS3(-/-) mice but did not worsen after HFD and TAC. In contrast with its protective role in SD, NOS3 increases LV adverse remodeling after pressure overload in HFD-fed, insulin resistant mice. Interactions between NOS3 and mitochondria may be responsible for increased oxidative stress levels in HFD-fed WT mice hearts.


Assuntos
Insuficiência Cardíaca/etiologia , Hipertensão/complicações , Resistência à Insulina , Miócitos Cardíacos/enzimologia , Óxido Nítrico Sintase Tipo III/deficiência , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Remodelação Ventricular , Trifosfato de Adenosina/metabolismo , Animais , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Metabolismo Energético , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Hipertensão/diagnóstico por imagem , Hipertensão/enzimologia , Hipertensão/genética , Hipertensão/fisiopatologia , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Estresse Oxidativo , Fosforilação , Serina , Fatores de Tempo , Ultrassonografia , Desacopladores/farmacologia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
16.
J Neurosci Methods ; 358: 109179, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819558

RESUMO

BACKGROUND: Middle cerebral artery occlusion (MCAO) with 1 -h ischemia followed by reperfusion is a widely used stroke model in rodents that has significant limitations such as high mortality and severe neurological deficit hampering comprehensive neurobehavioral evaluation. The goal of this study was to establish a mouse model of 30-minute MCAO followed by 48 h of reperfusion and compare it with 1 -h MCAO followed by 24 h of reperfusion. NEW METHOD: Here we propose a modified MCAO model that is favorable for both neurobehavioral and infarct volume evaluation. The model includes shorter ischemic time (30 min) of MCAO followed by 48 h of reperfusion and use of standardized intraoperative partial and total reperfusion, which allows for the detailed evaluation of initial and total reperfusion by means of the monitoring of CBF by LDF. RESULTS AND COMPARISON WITH EXISTING METHOD: Intraoperative CBF parameters and infarct volume (1-h MCAO at 24 h: 69 ±â€¯9; 30-minute MCAO at 48 h: 65 ±â€¯14 mm3) did not significantly differ between groups. Neurological deficit was less severe in 30-minute MCAO group where mice also had significantly longer ambulatory distance and time, lower resting time, and higher vertical count on the OPF. The latency to fall in the rotarod test was significantly higher in 30-minute MCAO group. The mortality was higher after 1 -h MCAO. CONCLUSIONS: 30-minute MCAO followed by 48 h of reperfusion causes intraoperative ischemia, reperfusion and infarct volume comparable with 1 -h MCAO followed by 24 h of reperfusion but results in lower mortality with milder neurological deficit allowing for more extensive neurobehavioral evaluation.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Circulação Cerebrovascular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Camundongos , Reperfusão
17.
Nanophotonics ; 10(12): 3187-3197, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34868804

RESUMO

Rapid establishment of herd immunity with vaccination is effective to combat emerging infectious diseases. Although the incorporation of adjuvant and intradermal (ID) injection could augment early responses to the vaccine, the current chemical or biological adjuvants are inappropriate for this purpose with their side effects and high reactogenicity in the skin. Recently, a near-infrared (NIR) laser has been shown to augment the immune response to ID vaccination and could be alternatively used for mass vaccination programs. Here, we determined the effect of NIR laser as well as licensed chemical adjuvants on the immunogenicity 1, 2, and 4 weeks after ID influenza vaccination in mice. The NIR laser adjuvant augmented early antibody responses, while the widely used alum adjuvant induced significantly delayed responses. In addition, the oil-in-water and alum adjuvants, but not the NIR laser, elicited escalated TH2 responses with allergenic immunoglobulin E (IgE) responses. The effect of the NIR laser was significantly suppressed in the basic leucine zipper transcription factor ATF-like 3 (Batf3) knockout mice, suggesting a critical role of the cluster of differentiation 103+ (CD103)+ dendritic cells. The current preliminary study suggests that NIR laser adjuvant is an alternative strategy to chemical and biological agents to timely combat emerging infectious diseases. Moreover, its immunomodulatory property could be used to enhance the efficacy of immunotherapy for allergy and cancer.

18.
Nat Commun ; 12(1): 3108, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035265

RESUMO

The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Sulfeto de Hidrogênio/metabolismo , Quinona Redutases/metabolismo , Animais , Encéfalo/patologia , Lesões Encefálicas/genética , Células Cultivadas , Feminino , Hipóxia , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Mitocôndrias/metabolismo , NAD/metabolismo , Quinona Redutases/genética , Interferência de RNA , Ratos Sprague-Dawley
19.
Stroke ; 41(8): 1815-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20595671

RESUMO

BACKGROUND AND PURPOSE: Nitric oxide mediates endothelium-dependent vasodilation, modulates cerebral blood flow, and determines stroke outcome. Nitric oxide signals in part by stimulating soluble guanylate cyclase (sGC) to synthesize cGMP. To study the role of sGC in stroke injury, we compared the outcome of cerebral ischemia and reperfusion in mice deficient in the alpha(1) subunit of sGC (sGCalpha(1)(-/-)) with that in wild-type mice. METHODS: Blood pressure, cerebrovascular anatomy, and vasoreactivity of pressurized carotid arteries were compared in both mouse genotypes. Cerebral blood flow was measured before and during middle cerebral artery occlusion and reperfusion. We then assessed neurological deficit and infarct volume after 1 hour of occlusion and 23 hours of reperfusion and after 24 hours of occlusion. RESULTS: Blood pressure and cerebrovascular anatomy were similar between genotypes. We found that vasodilation of carotid arteries in response to acetylcholine or sodium nitroprusside was diminished in sGCalpha(1)(-/-) compared with wild-type mice. Cerebral blood flow deficits did not differ between the genotypes during occlusion, but during reperfusion, cerebral blood flow was 45% less in sGCalpha(1)(-/-) mice. Infarct volumes and neurological deficits were similar after 24 hours of occlusion in both genotypes. After 1 hour of ischemia and 23 hours of reperfusion, infarct volumes were 2-fold larger and neurological deficits were worse in sGCalpha(1)(-/-) than in the wild-type mice. CONCLUSIONS: sGCalpha(1) deficiency impairs vascular reactivity to nitric oxide and is associated with incomplete reperfusion, larger infarct size, and worse neurological damage, suggesting that cGMP generated by sGCalpha(1)beta(1) is protective in ischemic stroke.


Assuntos
Guanilato Ciclase/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Pressão Sanguínea/genética , Circulação Cerebrovascular/genética , Genótipo , Guanilato Ciclase/genética , Infarto da Artéria Cerebral Média/genética , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Reperfusão , Traumatismo por Reperfusão/genética , Estatísticas não Paramétricas
20.
Pflugers Arch ; 460(6): 965-74, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20697735

RESUMO

Endothelial production of nitric oxide is critical to the regulation of vascular responses, including vascular tone and regional blood flow, leukocyte-endothelial interactions, platelet adhesion and aggregation, and vascular smooth muscle cell proliferation. A relative deficiency in the amount of bioavailable vascular NO results in endothelial dysfunction, with conditions that are conducive to the development of atherosclerosis: thrombosis, inflammation, neointimal proliferation, and vasoconstriction. This review focuses on mouse models of endothelial dysfunction caused by direct genetic modification of the endothelial nitric oxide synthase (eNOS) gene. We first describe the cardiovascular phenotypes of eNOS knockout mice, which are a model of total eNOS gene deficiency and thus the ultimate model of endothelial dysfunction. We then describe S1177A and S1177D eNOS mutant mice as mouse models with altered eNOS phosphorylation and therefore varying degrees of endothelial dysfunction. These include transgenic mice that carry the eNOS S1177A and S1177D transgenes, as well as knockin mice in which the endogenous eNOS gene has been mutated to carry the S1177A and S1177D mutations. Together, eNOS knockout mice and eNOS S1177 mutant mice are useful tools to study the effects of total genetic deficiency of eNOS as well as varying degrees of endothelial dysfunction caused by eNOS S1177 phosphorylation.


Assuntos
Endotélio/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Substituição de Aminoácidos , Animais , Plaquetas/metabolismo , Proliferação de Células , Infarto Cerebral/patologia , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Coração/fisiologia , Leucócitos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Cardíacas/fisiologia , Músculo Liso Vascular/citologia , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Fluxo Sanguíneo Regional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA