Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(24): 7192-7200, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29782792

RESUMO

Two-dimensional (2D) nanomaterials have attracted considerable attention in biomedical and environmental applications due to their antimicrobial activity. In the interest of investigating the primary antimicrobial mode-of-action of 2D nanomaterials, we studied the antimicrobial properties of MnO2 and MoS2, toward Gram-positive and Gram-negative bacteria. Bacillus subtilis and Escherichia coli bacteria were treated individually with 100 µg/mL of randomly oriented and vertically aligned nanomaterials for ∼3 h in the dark. The vertically aligned 2D MnO2 and MoS2 were grown on 2D sheets of graphene oxide, reduced graphene oxide, and Ti3C2 MXene. Measurements to determine the viability of bacteria in the presence of the 2D nanomaterials performed by using two complementary techniques, flow cytometry, and fluorescence imaging showed that, while MnO2 and MoS2 nanosheets show different antibacterial activities, in both cases, Gram-positive bacteria show a higher loss in membrane integrity. Scanning electron microscopy images suggest that the 2D nanomaterials, which have a detrimental effect on bacteria viability, compromise the cell wall, leading to significant morphological changes. We propose that the peptidoglycan mesh (PM) in the bacterial wall is likely the primary target of the 2D nanomaterials. Vertically aligned 2D MnO2 nanosheets showed the highest antimicrobial activity, suggesting that the edges of the nanosheets were likely compromising the cell walls upon contact.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Grafite/química , Nanoestruturas/química , Dissulfetos/química , Compostos de Manganês/química , Molibdênio/química , Nanoestruturas/ultraestrutura , Óxidos/química , Titânio/química
2.
Geochem Trans ; 17: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28316506

RESUMO

The effect of simulated solar radiation on the oxidation of arsenite [As(III)] to arsenate [As(V)] on the layered manganese oxide, birnessite, was investigated. Experiments were conducted where birnessite suspensions, under both anoxic and oxic conditions, were irradiated with simulated solar radiation in the presence of As(III) at pH 5, 7, and 9. X-ray absorption spectroscopy (XAS) was used to determine the nature of the adsorbed product on the surface of the birnessite. The oxidation of As(III) in the presence of birnessite under simulated solar light irradiation occurred at a rate that was faster than in the absence of light at pH 5. At pH 7 and 9, As(V) production was significantly less than at pH 5 and the amount of As(V) production for a given reaction time was the same under dark and light conditions. The first order rate constant (kobs) for As(III) oxidation in the presence of light and in the dark at pH 5 were determined to be 0.07 and 0.04 h-1, respectively. The As(V) product was released into solution along with Mn(II), with the latter product resulting from the reduction of Mn(IV) and/or Mn(III) during the As(III) oxidation process. Post-reaction XAS analysis of As(III) exposed birnessite showed that arsenic was present on the surface as As(V). Experimental results also showed no evidence that reactive oxygen species played a role in the As(III) oxidation process.

3.
Angew Chem Int Ed Engl ; 55(35): 10381-5, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27151204

RESUMO

We report a synthetic method to enhance the electrocatalytic activity of birnessite for the oxygen evolution reaction (OER) by intercalating Ni(2+) ions into the interlayer region. Electrocatalytic studies showed that nickel (7.7 atomic %)-intercalated birnessite exhibits an overpotential (η) of 400 mV for OER at an anodic current of 10 mA cm(-2) . This η is significantly lower than the η values for birnessite (η≈700 mV) and the active OER catalyst ß-Ni(OH)2 (η≈550 mV). Molecular dynamics simulations suggest that a competition among the interactions between the nickel cation, water, and birnessite promote redox chemistry in the spatially confined interlayer region.


Assuntos
Técnicas Eletroquímicas , Níquel/química , Oxigênio/química , Água/química , Catálise , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
4.
Langmuir ; 31(46): 12807-13, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26477450

RESUMO

We report a synthetic method to increase the catalytic activity of birnessite toward water oxidation by intercalating copper in the interlayer region of the layered manganese oxide. Intercalation of copper, verified by XRD, XPS, ICP, and Raman spectroscopy, was accomplished by exposing a suspension of birnessite to a Cu(+)-bearing precursor molecule that underwent disproportionation in solution to yield Cu(0) and Cu(2+). Electrocatalytic studies showed that the Cu-modified birnessite exhibited an overpotential for water oxidation of ∼490 mV (at 10 mA/cm(2)) and a Tafel slope of 126 mV/decade compared to ∼700 mV (at 10 mA/cm(2)) and 240 mV/decade, respectively, for birnessite without copper. Impedance spectroscopy results suggested that the charge transfer resistivity of the Cu-modified sample was significantly lower than Cu-free birnessite, suggesting that Cu in the interlayer increased the conductivity of birnessite leading to an enhancement of water oxidation kinetics. Density functional theory calculations show that the intercalation of Cu(0) into a layered MnO2 model structure led to a change of the electronic properties of the material from a semiconductor to a metallic-like structure. This conclusion from computation is in general agreement with the aforementioned impedance spectroscopy results. X-ray photoelectron spectroscopy (XPS) showed that Cu(0) coexisted with Cu(2+) in the prepared Cu-modified birnessite. Control experiments using birnessite that was decorated with only Cu(2+) showed a reduction in water oxidation kinetics, further emphasizing the importance of Cu(0) for the increased activity of birnessite. The introduction of Cu(0) into the birnessite structure also increased the stability of the electrocatalyst. At a working current of 2 mA, the Cu-modified birnessite took ∼3 times longer for the overpotential for water oxdiation to increase by 100 mV compared to when Cu was not present in the birnessite.


Assuntos
Cobre/química , Óxidos/química , Água/química , Catálise , Modelos Moleculares , Conformação Molecular , Oxirredução , Teoria Quântica
5.
Chem Commun (Camb) ; 57(13): 1675-1678, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33465209

RESUMO

Mo2C and Ti3C2 MXenes were investigated as earth-abundant electrocatalyts for the CO2 reduction reaction (CO2RR). Mo2C and Ti3C2 exhibited faradaic efficiencies of 90% (250 mV overpotential) and 65% (650 mV overpotential), respectively, for the reduction of CO2 to CO in acetonitrile using an ionic liquid electrolyte. The use of ionic liquid 1-ethyl-2-methylimidazolium tetrafluoroborate as an electrolyte in organic solvent suppressed the competing hydrogen evolution reaction. Density functional theory (DFT) calculations suggested that the catalytic active sites are oxygen vacancy sites on both MXene surfaces. Also, a spontaneous dissociation of adsorbed COOH species to a water molecule and adsorbed CO on Mo2C promote the CO2RR.

6.
Nanomicro Lett ; 12(1): 41, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34138277

RESUMO

Photothermal catalysis represents a promising strategy to utilize the renewable energy source (e.g., solar energy) to drive chemical reactions more efficiently. Successful and efficient photothermal catalysis relies on the availability of ideal photothermal catalysts, which can provide both large areas of catalytically active surface and strong light absorption power simultaneously. Such duplex requirements of a photothermal catalyst exhibit opposing dependence on the size of the catalyst nanoparticles, i.e., smaller size is beneficial for achieving higher surface area and more active surface, whereas larger size favors the light absorption in the nanoparticles. In this article, we report the synthesis of ultrafine RuOOH nanoparticles with a size of 2-3 nm uniformly dispersed on the surfaces of silica (SiOx) nanospheres of hundreds of nanometers in size to tackle this challenge of forming an ideal photothermal catalyst. The ultrasmall RuOOH nanoparticles exhibit a large surface area as well as the ability to activate adsorbed molecular oxygen. The SiOx nanospheres exhibit strong surface light scattering resonances to enhance the light absorption power of the small RuOOH nanoparticles anchored on the SiOx surface. Therefore, the RuOOH/SiOx composite particles represent a new class of efficient photothermal catalysts with a photothermal energy conversion efficiency of 92.5% for selective aerobic oxidation of benzyl alcohol to benzylaldehyde under ambient conditions.

7.
Nanomaterials (Basel) ; 10(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413953

RESUMO

Herein, we report the catalyst assisted growth of TiO2 one-dimensional (1D) nanowires (NWs) on alumina substrates by the thermal oxidation technique. RF magnetron sputtering was used to deposit a thin Ti metallic layer on the alumina substrate, followed by an Au catalytic layer on the Ti metallic one. Thermal oxidation was carried out in an oxygen deficient environment. The optimal thermal growth temperature was 700 °C, in a mixture environment composed by Ar and O2. As a comparison, Ti films were also oxidized without the presence of the Au catalyst. However, without the Au catalyst, no growth of nanowires was observed. Furthermore, the effect of the oxidation temperature and the film thickness were also investigated. SEM, TEM, and EDX studies demonstrated the presence of Au nanoparticles on top of the NWs, indicating that the Au catalyst drove the growth process. Raman spectroscopy revealed the Rutile crystalline phase of TiO2 NWs. Gas testing measurements were carried out in the presence of a relative humidity of 40%, showing a reversible response to ethanol and H2 at various concentrations. Thanks to the moderate temperature and the easiness of the process, the presented synthesis technique is suitable to grow TiO2 NWs for many different applications.

8.
J Phys Chem B ; 122(2): 847-854, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28880559

RESUMO

We present a combined experimental and theoretical study to demonstrate that the electrocatalytic activity of NiFe layered double hydroxides (NiFe LDHs) for the oxygen evolution reaction (OER) can be significantly enhanced by systematic cobalt incorporation using coprecipitation and/or intercalation. Electrochemical measurements show that cobalt modified NiFe LDH possesses an enhanced activity for the OER relative to pristine NiFe LDH. The Co-modified NiFe LDH exhibits overpotentials in the range of 290-322 mV (at 10 mA cm-2), depending on the degree of cobalt content. The best catalyst, cobalt intercalated NiFe LDH achieved a current density of 10 mA cm-2 at an overpotential of ∼265 mV (compared to 310 mV for NiFe LDH), with a near unity (99%) faradaic efficiency and long-term stability. Density functional theory calculations revealed that enhanced activity of Co-modified NiFe LDH could be attributed to the ability of Co to tune the electronic structure of the NiFe LDH so that optimal binding of OER reaction intermediates could be achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA