Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133421, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211523

RESUMO

Re-melting of scrap in an electric arc furnace (EAF) results in the accumulation of filter dust from off-gas treatment that predominantly consists of iron and zinc oxides. Filter dust is classified as hazardous waste due to its high contents of potentially toxic or ecotoxic elements such as Pb, Cr, Cd, and As. A promising processing route for this waste is selective chlorination, in which the non-ferrous metal oxides are chlorinated and selectively evaporated in form of their respective chlorides from the remaining solids via the process gas flow. Here, we investigate stepwise thermochemical treatment of EAF dust with either waste iron(II) chloride solution or hydrochloric acid at 650, 800, and 1100 °C. The Zn and Pb contents of the thermochemically processed EAF dust could be lowered from 29.9% and 1.63% to 0.09% and 0.004%, respectively. Stepwise heating allowed high separation between zinc chloride at the 650 °C step and sodium-, potassium-, and lead-containing chlorides at higher temperatures. Furthermore, the lab-scale results were transferred to the use of an experimental rotary kiln highlighting the possibilities of upscaling the presented process. Selective chlorination of EAF dust with liquid chlorine donors is, therefore, suggested as a potential recycling method for Zn-enriched steelworks dusts.

2.
J Hazard Mater ; 402: 123511, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254735

RESUMO

One of the typical wastes produced in blast-furnace (BF) ironmaking is BF sludge, which mostly consists of carbon and iron oxides, but also contains toxic trace metals such as Zn, Pb, Cd, As, and Hg that render the material hazardous. Due to the lack of an established recycling process, BF sludges are landfilled, which is ecologically questionable and costly. Here, we investigate selective removal of Zn, Pb, and Cd from BF sludge by chlorination-evaporation reactions using thermodynamic modelling and laboratory-scale experiments. Specifically, BF sludge was thermochemically treated at 650-1000 °C with a spent iron(II) chloride solution from steel pickling and the effects of process temperature and retention time on removal of Zn, Pb, and Cd were investigated. Zinc and Pb were quantitatively removed from BF sludge thermochemically treated at 900-1000 °C, whereas Fe and C as well as other major elements were mostly retained. The Zn, Pb, and Cd contents in the thermochemically treated BF sludge could be lowered from ∼56 g/kg, ∼4 g/kg, and ∼0.02 g/kg to ≤0.7 g/kg, ≤0.02 g/kg, and ≤0.008 g/kg, respectively, thus rendering the processed mineral residue a non-hazardous raw material that may be re-utilized in the blast furnace or on the sinter band.

3.
Chemphyschem ; 10(8): 1238-46, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19425035

RESUMO

Nanocrystalline TiO(2) (anatase) is an essential oxide for environment and energy applications. A combination of EXAFS spectroscopy and DFT calculations on a series of dopants with quite similar ion radius, but increasing ion charge, show boundary space charge segregation of acceptor cations. The picture illustrates the Fourier-transformed EXAFS spectrum for Sn(4+)-doped TiO(2).A series of dopants, including acceptor ions (Zn(2+), Y(3+)), isovalent ions (Zr(4+), Sn(4+)) as well as a donor ion (Nb(5+)), were studied by EXAFS spectroscopy in nanocrystalline TiO(2) anatase powders and nanoceramics. Similar results were found for nanocrystalline powders and nanocrystalline ceramics, made by hot-pressing the powders. Boundary segregation was observed for the acceptor ions yttrium and zinc, whereas tin, zirconium and niobium ions were placed on substitutional bulk sites and did not segregate, whatever their concentration. These results can be interpreted based on defect thermodynamics, in the framework of a space charge segregation model with positive boundary core, due to excess oxide ion vacancies, and negative space charge regions, where ionized acceptors are segregated.


Assuntos
Nanopartículas/química , Titânio/química , Cristalização , Íons , Análise Espectral , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA