Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(36): e202400862, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38676548

RESUMO

A close mimic of P680 and the TyrosineZ-Histidine190 pair in photosystem II (PS II) has been synthesized using a ruthenium chromophore and imidazole-phenol ligands. The intramolecular oxidation of the ligands by the photoproduced Ru(III) species is characterized by a small driving force, very similar to PS II where the complexity of kinetics was attributed to the reversibility of electron transfer steps. Laser flash photolysis revealed biphasic kinetics for ligand oxidation. The fast phase (τ<50 ns) corresponds to partial oxidation of the imidazole-phenol ligand, proton transfer within the hydrogen bond, and formation of a neutral phenoxyl radical. The slow phase (5-9 µs) corresponds to full oxidation of the ligand which is kinetically controlled by deprotonation of the distant 1-nitrogen of the imidazolium. These results show that imidazole with its two protonatable sites plays a special role as a proton relay in a 'proton domino' reaction.

2.
Angew Chem Int Ed Engl ; 63(4): e202314439, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38050770

RESUMO

Iron porphyrins are among the most studied molecular catalysts for carbon dioxide (CO2 ) reduction and their reactivity is constantly being enhanced through the implementation of chemical functionalities in the second coordination sphere inspired by the active sites of enzymes. In this study, we were intrigued to observe that a multipoint hydrogen bonding scheme provided by embarked urea groups could also shift the redox activation step of CO2 from the well-admitted Fe(0) to the Fe(I) state. Using EPR, resonance Raman, IR and UV-Visible spectroscopies, we underpinned a two-electron activation step of CO2 starting from the Fe(I) oxidation state to form, after protonation, an Fe(III)-COOH species. The addition of another electron and a proton to the latter species converged to the cleavage of a C-O bond with the loss of water molecule resulting in an Fe(II)-CO species. DFT analyses of these postulated intermediates are in good agreement with our collected spectroscopic data, allowing us to propose an alternative pathway in the catalytic CO2 reduction with iron porphyrin catalyst. Such a remarkable shift opens new lines of research in the design of molecular catalysts to reach low overpotentials in performing multi-electronic CO2 reduction catalysis.

3.
Angew Chem Int Ed Engl ; 62(8): e202214665, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36504434

RESUMO

At the core of carbon monoxide dehydrogenase (CODH) active site two metal ions together with hydrogen bonding scheme from amino acids orchestrate the interconversion between CO2 and CO. We have designed a molecular catalyst implementing a bimetallic iron complex with an embarked second coordination sphere with multi-point hydrogen-bonding interactions. We found that, when immobilized on carbon paper electrode, the dinuclear catalyst enhances up to four fold the heterogeneous CO2 reduction to CO in water with an improved selectivity and stability compared to the mononuclear analogue. Interestingly, quasi-identical catalytic performances are obtained when one of the two iron centers was replaced by a redox inactive Zn metal, questioning the cooperative action of the two metals. Snapshots of X-ray structures indicate that the two metalloporphyrin units tethered by a urea group is a good compromise between rigidity and flexibility to accommodate CO2 capture, activation, and reduction.

4.
Photochem Photobiol Sci ; 21(2): 247-259, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34988933

RESUMO

Electron relays play a crucial role for efficient light-induced activation by a photo-redox moiety of catalysts for multi-electronic transformations. Their insertion between the two units reduces detrimental energy transfer quenching while establishing at the same time unidirectional electron flow. This rectifying function allows charge accumulation necessary for catalysis. Mapping these events in photophysical studies is an important step towards the development of efficient molecular photocatalysts. Three modular complexes comprised of a Ru-chromophore, an imidazole electron relay function, and a terpyridine unit as coordination site for a metal ion were synthesized and the light-induced electron transfer events studied by laser flash photolysis. In all cases, formation of an imidazole radical by internal electron transfer to the oxidized chromophore was observed. The effect of added base evidenced that the reaction sequence depends strongly on the possibility for deprotonation of the imidazole function in a proton-coupled electron transfer process. In the complex with MnII present as a proxy for a catalytic site, a strongly accelerated decay of the imidazole radical together with a decreased rate of back electron transfer from the external electron acceptor to the oxidized complex was observed. This transient formation of an imidazolyl radical is clear evidence for the function of the imidazole group as an electron relay. The implication of the imidazole proton and the external base for the kinetics and energetics of the electron trafficking is discussed.


Assuntos
Elétrons , Prótons , Transporte de Elétrons , Imidazóis , Luz
5.
Angew Chem Int Ed Engl ; 61(14): e202117530, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35080122

RESUMO

Iron porphyrins are among the best molecular catalysts for the electrocatalytic CO2 reduction reaction. Powering these catalysts with the help of photosensitizers comes along with a couple of unsolved challenges that need to be addressed with much vigor. We have designed an iron porphyrin catalyst decorated with urea functions (UrFe) acting as a multipoint hydrogen bonding scaffold towards the CO2 substrate. We found a spectacular photocatalytic activity reaching unreported TONs and TOFs as high as 7270 and 3720 h-1 , respectively. While the Fe0 redox state has been widely accepted as the catalytically active species, we show here that the FeI species is already involved in the CO2 activation, which represents the rate-determining step in the photocatalytic cycle. The urea functions help to dock the CO2 upon photocatalysis. DFT calculations bring support to our experimental findings that constitute a new paradigm in the catalytic reduction of CO2 .

6.
Inorg Chem ; 60(13): 9442-9455, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34137590

RESUMO

Understanding the reactivity landscape for the activation of water until the formation of the O-O bond and O2 release in molecular chemistry is a decisive step in guiding the elaboration of cost-effective catalysts for the oxygen-evolving reaction (OER). Copper(II) complexes have recently caught the attention of chemists as catalysts for the 4e-/4H+ water oxidation process. While a copper(IV) intermediate has been proposed as the reactive intermediate species, no spectroscopic signature has been reported so far. Copper(III) ligand radical species have also been formulated and supported by theoretical studies. We found, herein, that the reactivity sequence for the water oxidation with a family of Copper(II) o-phenylene bis-oxamidate complexes is a function of the substitution pattern on the periphery of the aromatic ring. In-situ EPR, FTIR, and rR spectroelectrochemical studies helped to sequence the elementary electrochemical and chemical events leading toward the O2 formation selectively at the copper center. EPR and FTIR spectroelectrochemistry suggests that ligand-centered oxidations are preferred over metal-centered oxidations. rR spectroelectrochemical study revealed the accumulation of a bis-imine bound copper(II) superoxide species, as the reactive intermediate, under catalytic turnover, which provides the evidence for the O-O bond formation during OER.

7.
Angew Chem Int Ed Engl ; 60(22): 12284-12288, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33600039

RESUMO

The textbook explanation that P680 pigments are the red limit to drive oxygenic photosynthesis must be reconsidered by the recent discovery that chlorophyll f (Chlf)-containing Photosystem II (PSII) absorbing at 727 nm can drive water oxidation. Two different families of unsymmetrically substituted Zn phthalocyanines (Pc) absorbing in the 700-800 nm spectral window and containing a fused imidazole-phenyl substituent or a fused imidazole-hydroxyphenyl group have been synthetized and characterized as a bioinspired model of the Chlf/TyrosineZ /Histidine190 cofactors of PSII. Transient absorption studies in the presence of an electron acceptor and irradiating in the far-red region evidenced an intramolecular electron transfer process. Visible and FT-IR signatures indicate the formation of a hydrogen-bonded phenoxyl radical in ZnPc II-OH. This study sets the foundation for the utilization of a broader spectral window for multi-electronic catalytic processes with one of the most robust and efficient dyes.


Assuntos
Clorofila/análogos & derivados , Indóis/química , Luz , Compostos Organometálicos/química , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/química , Isoindóis , Modelos Moleculares , Oxirredução , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/química , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Zinco
8.
Chemistry ; 26(13): 2859-2868, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743487

RESUMO

Inspired by the sulfur-rich environment found in active hydrogenase enzymes, a Ni-based proton reduction catalyst with pentadentate N2 S3 ligand was synthesised. When coupled with [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) as photosensitiser and ascorbate as electron donor in a 1:1 mixture of dimethylacetamide and aqueous ascorbic acid/ascorbate buffer, the catalyst showed improved photocatalytic activity compared with a homologous counterpart bearing a tetradentate N2 S2 ligand. The mechanistic pathway of photoinduced hydrogen evolution was comprehensively analysed through optical transient absorption and time-resolved X-ray absorption spectroscopy, which revealed important electronic and structural changes in the catalytic system during photoirradiation. The NiII catalyst undergoes a photoinduced metal-centred reduction to form a NiI intermediate with distorted square-bipyramidal geometry. Further kinetic analyses revealed differences in charge-separation dynamics between the pentadentate and tetradentate forms.


Assuntos
Complexos de Coordenação/química , Hidrogenase/química , Rênio/química , Enxofre/química , Catálise , Hidrogenase/metabolismo , Ligantes , Prótons , Espectroscopia por Absorção de Raios X
9.
Angew Chem Int Ed Engl ; 59(50): 22451-22455, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32909320

RESUMO

The manipulation of the second coordination sphere for improving the electrocatalytic CO2 reduction has led to breakthroughs with hydrogen bonding, local proton source, or electrostatic effects. We have developed two atropisomers of an iron porphyrin complex with two urea functions acting as multiple hydrogen-bonding tweezers to lock the metal-bound CO2 in a similar fashion found in the carbon monoxide dehydrogenase (CODH) enzyme. The αα topological isomer with the two urea groups on the same side of the porphyrin provides a stronger binding affinity to tether the incoming CO2 in comparison to the αß disposition. However, the electrocatalytic activity of the αß atropisomer outperforms its congener with one of the highest reported turnover frequencies at low overpotential. The strong H/D kinetic isotope effect (KIE) observed for the αα system indicates the existence of a tight water hydrogen-bonding network for proton delivery which is disrupted by addition of an acid source. The small H/D KIE for the αß isomer and the enhanced electrocatalytic performance on addition of stronger acid indicate the free access of protons to the bound CO2 on the opposite side of the urea arm.


Assuntos
Dióxido de Carbono/química , Metaloporfirinas/química , Catálise , Medição da Troca de Deutério , Ligação de Hidrogênio , Cinética , Estrutura Molecular , Oxirredução , Eletricidade Estática
10.
Angew Chem Int Ed Engl ; 58(45): 16023-16027, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31553518

RESUMO

Using light energy and O2 for the direct chemical oxidation of organic substrates is a major challenge. A limitation is the use of sacrificial electron donors to activate O2 by reductive quenching of the photosensitizer, generating undesirable side products. A reversible electron acceptor, methyl viologen, can act as electron shuttle to oxidatively quench the photosensitizer, [Ru(bpy)3 ]2+ , generating the highly oxidized chromophore and the powerful reductant methyl-viologen radical MV+. . MV+. can then reduce an iron(III) catalyst to the iron(II) form and concomitantly O2 to O2.- in an aqueous medium to generate an active iron(III)-(hydro)peroxo species. The oxidized photosensitizer is reset to its ground state by oxidizing an alkene substrate to an alkenyl radical cation. Closing the loop, the reaction of the iron reactive intermediate with the substrate or its radical cation leads to the formation of two oxygenated compounds, the diol and the aldehyde following two different pathways.

11.
Angew Chem Int Ed Engl ; 58(14): 4504-4509, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30786128

RESUMO

Inspired by nature's orchestra of chemical subtleties to activate and reduce CO2 , we have developed a family of iron porphyrin derivatives in to which we have introduced urea groups functioning as multipoint hydrogen-bonding pillars on the periphery of the porphyrinic ring. This structure closely resembles the hydrogen-bond stabilization scheme of the carbon dioxide (CO2 ) adduct in the carbon monoxide dehydrogenase (CODH). We found that such changes to the second coordination sphere significantly lowered the overpotential for CO2 reduction in this family of molecular catalysts and importantly increased the CO2 binding rate while maintaining high turnover frequency (TOF) and selectivity. Entrapped water molecules within the molecular clefts were found to be the source of protons for the CO2 reduction.


Assuntos
Materiais Biomiméticos/química , Dióxido de Carbono/química , Ferro/química , Metaloporfirinas/química , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular
12.
Angew Chem Int Ed Engl ; 57(29): 9013-9017, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29785765

RESUMO

We investigate a biomimetic model of a TyrZ /His190 pair, a hydrogen-bonded phenol/imidazole covalently attached to a porphyrin sensitizer. Laser flash photolysis in the presence of an external electron acceptor reveals the need for water molecules to unlock the light-induced oxidation of the phenol through an intramolecular pathway. Kinetics monitoring encompasses two fast phases with distinct spectral properties. The first phase is related to a one-electron transfer from the phenol to the porphyrin radical cation coupled with a domino two-proton transfer leading to the ejection of a proton from the imidazole-phenol pair. The second phase concerns conveying the released proton to the porphyrin N4 coordinating cavity. Our study provides an unprecedented example of a light-induced electron-transfer process in a TyrZ /His190 model of photosystem II, evidencing the movement of both the phenol and imidazole protons along an isoenergetic pathway.

13.
Angew Chem Int Ed Engl ; 56(50): 15936-15940, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29139597

RESUMO

Biomimetic models that contain elements of photosynthesis are fundamental in the development of synthetic systems that can use sunlight to produce fuel. The critical task consists of running several rounds of light-induced charge separation, which is required to accumulate enough redox equivalents at the catalytic sites for the target chemistry to occur. Long-lived first charge-separated state and distinct electronic signatures for the sequential charge accumulated species are essential features to be able to track these events on a spectroscopic ground. Herein, we use a double-excitation nanosecond pump-pump-probe experiment to interrogate two successive rounds of photo-induced electron transfer on a molecular dyad containing a naphthalene diimide (NDI) linked to a [Ru(bpy)3 ]2+ (bpy=bipyridine) chromophore by using a reversible electron donor. We report an unprecedented long-lived two-electron charge accumulation (t=200 µs).

14.
Inorg Chem ; 54(18): 9013-26, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26340100

RESUMO

Two square-planar copper(II) complexes of 1,2-bis(2-hydroxy-3,5-di-tert-butylbenzimino)-4,5-bis(dimethylamino)benzene (1) and N-[4,5-bis(dimethylamino)-2-(oxalylamino)benzene]oxamate (2(2-)) were prepared. The crystal structures of the proligands H2L(1) and Et2H2L(2), as well as the corresponding complexes, are reported. The proligands each display a one-electron-oxidation wave, which is assigned to oxidation of the bis(dimethylamino)benzene moiety into a π radical. Complexes 1 and 2(2-) exhibit reversible one-electron-oxidation waves in their cyclic voltammograms (E1/2(1) = 0.14 and E1/2(2) = 0.31 V for 1 and E1/2(1) = -0.47 V vs Fc(+)/Fc for 2(2-)). The first process corresponds to oxidation of the bis(dimethylamino)benzene central ring into a π radical, while the second process for 1 is ascribed to oxidation of the π radical into an α-diiminoquinone. The one-electron-oxidized species 1(+) and 2(-) exhibit intense visible-near-IR absorptions, which are diagnostic of π radicals. They display a triplet signal in their electron paramagnetic resonance spectra, which stem from magnetic coupling between the ligand-radical spin and the copper(II) spin. The zero-field-splitting parameters are larger for 2(-) than 1(+) because of greater delocalization of the spin density onto the coordinated amidato N atoms. Density functional theory calculations support a π-radical nature of the one-electron-oxidized complexes, as well as S = 1 ground spin states. The electrogenerated 1(2+) comprises a closed-shell diiminoquinone ligand coordinated to a copper(II) metal center. Both 1 and 2 catalyze the aerobic oxidation of benzyl alcohol, albeit with different yields.


Assuntos
Complexos de Coordenação/química , Cobre/química , Oxirredução , Álcool Benzílico/química , Complexos de Coordenação/síntese química , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Ácido Oxâmico/análogos & derivados , Ácido Oxâmico/química , Salicilatos/química
15.
Phys Chem Chem Phys ; 17(37): 24166-72, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26327298

RESUMO

The synthesis of a porphyrin-Ru(II) polypyridine complex where the porphyrin acts as a photoactive unit and the Ru(II) polypyridine as a catalytic precursor is described. Comparatively, the free base porphyrin was found to outperform the ruthenium based chromophore in the yield of light induced electron transfer. Mechanistic insights indicate the occurrence of a ping-pong energy transfer from the (1)LC excited state of the porphyrin chromophore to the (3)MCLT state of the catalyst and back to the (3)LC excited state of the porphyrin unit. The latter, triplet-triplet energy transfer back to the chromophore, efficiently competes with fast radiationless deactivation of the excited state at the catalyst site. The energy thus recovered by the chromophore allows improved yield of formation of the oxidized form of the chromophore and concomitantly of the oxidation of the catalytic unit by intramolecular charge transfer. The presented results are among the rare examples where a porphyrin chromophore is successfully used to drive an oxidative activation process where reductive processes prevail in the literature.


Assuntos
Luz , Compostos Organometálicos/química , Porfirinas/química , Piridinas/química , Rutênio/química , Catálise , Transferência de Energia , Estrutura Molecular , Compostos Organometálicos/síntese química
16.
Phys Chem Chem Phys ; 16(24): 12067-72, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24600692

RESUMO

In this paper we report the synthesis of a chromophore-catalyst assembly designed for the photoreduction of carbon dioxide. The chromophore unit is made up of a ruthenium trisbipyridyl-like unit covalently attached to a nickel cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) via a triazole ring. The intramolecular electron transfer activation of the catalyst unit by visible light was studied by nanosecond flash photolysis and EPR spectroscopy. In aqueous solutions (pH = 6.5), activation of the Ru(II)-Ni(II) modular assembly with 450 nm visible light in the presence of a sacrificial electron donor accomplishes the reduction of CO2 into CO and H2 in a ratio of 2.7 to 1.


Assuntos
Dióxido de Carbono/química , Compostos Heterocíclicos/química , Luz , Níquel/química , Rutênio/química , Espectroscopia de Ressonância Magnética , Oxirredução , Espectrometria de Massas por Ionização por Electrospray
17.
Photochem Photobiol Sci ; 12(6): 1074-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23558787

RESUMO

Click chemistry was used as an efficient method to covalently attach a chromophore to an amino acid. Such easily prepared model systems allow for time-resolved studies of one-electron oxidation reactions by the excitation of the chromophore by a laser flash. The model complex ruthenium-tryptophan (Ru-Trp) has been synthesised and studied for its photophysical and electrochemical properties. Despite a small driving force of less than 100 meV, excitation with a laser flash results in fast internal electron transfer leading to the formation of the protonated radical (Trp˙H(+)). At neutral pH electron transfer is followed by deprotonation to form the neutral Trp˙ radical with the rate depending on the concentration of water acting as the proton acceptor. The formation of the tryptophan radical was confirmed by EPR.


Assuntos
Radicais Livres/química , Rutênio/química , Triptofano/química , Química Click , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Luz , Oxirredução , Prótons , Triptofano/síntese química
18.
Chempluschem ; 88(8): e202300222, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37466131

RESUMO

The core challenge in developing cost-efficient catalysts for carbon dioxide (CO2 ) conversion mainly lies in controlling its complex reaction pathways. One such strategy exploits bimetallic cooperativity, which relies on the synergistic interaction between two metal centers to activate and convert the CO2 substrate. While this approach has seen an important trend in heterogeneous catalysis as a handle to control stabilities of surface intermediates, it has not often been utilized in molecular and heterogenized molecular catalytic systems. In this review, we gather general principles on how natural CO2 activating enzymes take advantage of bimetallic strategy and how phosphines, cyclams, polypyridyls, porphyrins, and cryptates-based homo- and hetero-bimetallic molecular catalysts can help understand the synergistic effect of two metal centers.

19.
Nat Commun ; 14(1): 4451, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488106

RESUMO

Harvesting sunlight to drive carbon dioxide (CO2) valorisation represents an ideal concept to support a sustainable and carbon-neutral economy. While the photochemical reduction of CO2 to carbon monoxide (CO) has emerged as a hot research topic, the full CO2-to-CO conversion remains an often-overlooked criterion that prevents a productive and direct valorisation of CO into high-value-added chemicals. Herein, we report a photocatalytic process that unlocks full and fast CO2-to-CO conversion (<10 min) and its straightforward valorisation into human health related field of radiochemistry with carbon isotopes. Guided by reaction-model-based kinetic simulations to rationalize reaction optimisations, this manifold opens new opportunities for the direct access to 11C- and 14C-labeled pharmaceuticals from their primary isotopic sources [11C]CO2 and [14C]CO2.

20.
Inorg Chem ; 51(11): 5985-7, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22590981

RESUMO

In this Communication, we present the synthesis and use of [Ru(bpy)(2)(bpy-CCH)](2+), a versatile synthon for the construction of more sophisticated dyads by means of click chemistry. The resulting chromophore-acceptor or -donor complexes have been studied by flash photolysis and are shown to undergo efficient electron transfer to/from the chromophore. Additionally, the photophysical and chemical properties of the original chromophore remain intact, making it a very useful component for the preparation of visible-light-active dyads.


Assuntos
Química Click , Complexos de Coordenação/síntese química , Piridinas/síntese química , Rutênio/química , Química Click/métodos , Complexos de Coordenação/química , Transporte de Elétrons , Luz , Modelos Moleculares , Fotólise , Piridinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA