Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Clin Microbiol ; 51(8): 2633-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761144

RESUMO

The rapid diagnosis of rifampin resistance is hampered by a reported insufficient specificity of molecular techniques for detection of rpoB mutations. Our objective for this study was to document the prevalence and prognostic value of rpoB mutations with unclear phenotypic resistance. The study design entailed sequencing directly from sputum of first failure or relapse patients without phenotypic selection and comparison of the standard retreatment regimen outcome, according to the mutation present. We found that among all rpoB mutations, the best-documented "disputed" rifampin resistance mutations (511Pro, 516Tyr, 526Asn, 526Leu, 533Pro, and 572Phe) made up 13.1% and 10.6% of all mutations in strains from Bangladesh and Kinshasa, respectively. Except for the 511Pro and 526Asn mutations, most of these strains with disputed mutations tested rifampin resistant in routine Löwenstein-Jensen medium proportion method drug susceptibility testing (DST; 78.7%), but significantly less than those with common, undisputed mutations (96.3%). With 63% of patients experiencing failure or relapse in both groups, there was no difference in outcome of first-line retreatment between patients carrying a strain with disputed versus common mutations. We conclude that rifampin resistance that is difficult to detect by the gold standard, phenotypic DST, is clinically and epidemiologically highly relevant. Sensitivity rather than specificity is imperfect with any rifampin DST method. Even at a low prevalence of rifampin resistance, a rifampin-resistant result issued by a competent laboratory may not warrant confirmation, although the absence of a necessity for confirmation needs to be confirmed for molecular results among new cases. However, a result of rifampin susceptibility should be questioned when suspicion is very high, and further DST using a different system (i.e., genotypic after phenotypic testing) would be fully justified.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana , Técnicas de Diagnóstico Molecular/métodos , Mutação de Sentido Incorreto , Mycobacterium/genética , Tuberculose/microbiologia , Antituberculosos/farmacologia , Bangladesh , República Democrática do Congo , Humanos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium/efeitos dos fármacos , Mycobacterium/isolamento & purificação , Rifampina/farmacologia , Escarro/microbiologia
2.
Microb Genom ; 9(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37750750

RESUMO

The spread of multidrug-resistant tuberculosis (MDR-TB) is a growing problem in many countries worldwide. Resistance to one of the primary first-line drugs, rifampicin, is caused by mutations in the Mycobacterium tuberculosis rpoB gene. So-called borderline rpoB mutations confer low-level resistance, in contrast to more common rpoB mutations which confer high-level resistance. While some borderline mutations show lower fitness in vitro than common mutations, their in vivo fitness is currently unknown. We used a dataset of 394 whole genome sequenced MDR-TB isolates from Bangladesh, representing around 44 % of notified MDR-TB cases over 6 years, to look at differences in transmission clustering between isolates with borderline rpoB mutations and those with common rpoB mutations. We found a relatively low percentage of transmission clustering in the dataset (34.8 %) but no difference in clustering between different types of rpoB mutations. Compensatory mutations in rpoA, rpoB, and rpoC were associated with higher levels of transmission clustering as were lineages two, three, and four relative to lineage one. Young people as well as patients with high sputum smear positive TB were more likely to be in a transmission cluster. Our findings show that although borderline rpoB mutations have lower in vitro growth potential this does not translate into lower transmission potential or in vivo fitness. Proper detection of these mutations is crucial to ensure they do not go unnoticed and spread MDR-TB within communities.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Bangladesh/epidemiologia , Mutação , Rifampina/farmacologia , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética
3.
Int J Infect Dis ; 100: 357-365, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32829049

RESUMO

OBJECTIVES: We investigated whether companion drug resistance was associated with adverse outcomes of the shorter multidrug-resistant tuberculosis (MDR-TB) treatment regimen in Bangladesh after adjustment for fluoroquinolone resistance. METHODS: MDR-TB/rifampicin-resistant tuberculosis patients registered for treatment with a standardized gatifloxacin-based shorter MDR-TB treatment regimen were selected for the study. Drug resistance was determined by the proportion method, gatifloxacin and isoniazid minimum inhibitory concentration testing for selected isolates, and whole-genome sequencing. RESULTS: Low-level fluoroquinolone resistance and high-level fluoroquinolone resistance were the most important predictors of adverse outcomes, with pyrazinamide resistance having a significant yet lower impact. In patients with fluoroquinolone-/second-line-injectable-susceptible tuberculosis, non-eligibility for the shorter MDR-TB treatment regimen (initial resistance to pyrazinamide, ethionamide, or ethambutol) was not associated with adverse outcome (adjusted odds ratio 1.01; 95% confidence interval 0.4-2.8). Kanamycin resistance was uncommon (1.3%). Increasing levels of resistance to isoniazid predicted treatment failure, also in a subgroup of patients with high-level fluoroquinolone-resistant tuberculosis. CONCLUSIONS: Our results suggest that resistance to companion drugs in the shorter MDR-TB treatment regimen, except kanamycin resistance, is of no clinical importance as long as fluoroquinolone susceptibility is preserved. Hence, contrary to current WHO guidelines, exclusions to the standard regimen are justified only in the case of fluoroquinolone resistance. and possibly kanamycin resistance.


Assuntos
Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adolescente , Adulto , Idoso , Bangladesh , Criança , Pré-Escolar , Protocolos Clínicos , Etambutol/uso terapêutico , Feminino , Fluoroquinolonas/uso terapêutico , Humanos , Isoniazida/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Pirazinamida/uso terapêutico , Rifampina/uso terapêutico , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA