Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Topogr ; 28(3): 379-400, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24869676

RESUMO

The functional properties of auditory cortex neurons are most often investigated separately, through spectrotemporal receptive fields (STRFs) for the frequency tuning and the use of frequency sweeps sounds for selectivity to velocity and direction. In fact, auditory neurons are sensitive to a multidimensional space of acoustic parameters where spectral, temporal and spatial dimensions interact. We designed a multi-parameter stimulus, the random double sweep (RDS), composed of two uncorrelated random sweeps, which gives an easy, fast and simultaneous access to frequency tuning as well as frequency modulation sweep direction and velocity selectivity, frequency interactions and temporal properties of neurons. Reverse correlation techniques applied to recordings from the primary auditory cortex of guinea pigs and rats in response to RDS stimulation revealed the variety of temporal dynamics of acoustic patterns evoking an enhanced or suppressed firing rate. Group results on these two species revealed less frequent suppression areas in frequency tuning STRFs, the absence of downward sweep selectivity, and lower phase locking abilities in the auditory cortex of rats compared to guinea pigs.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Estimulação Acústica/métodos , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Cobaias , Microeletrodos , Ratos Sprague-Dawley , Espectrografia do Som , Especificidade da Espécie
2.
J Neurosci ; 33(33): 13326-43, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23946391

RESUMO

It remains controversial whether and how spatial frequency (SF) is represented tangentially in cat visual cortex. Several models were proposed, but there is no consensus. Worse still, some data indicate that the SF organization previously revealed by optical imaging techniques simply reflects non-stimulus-specific responses. Instead, stimulus-specific responses arise from the homogeneous distribution of geniculo-cortical afferents representing X and Y pathways. To clarify this, we developed a new imaging method allowing rapid stimulation with a wide range of SFs covering more than 6 octaves with only 0.2 octave resolution. A benefit of this method is to avoid error of high-pass filtering methods which systematically under-represent dominant selectivity features near pinwheel centers. We show unequivocally that SF is organized into maps in cat area 17 (A17) and area 18 (A18). The SF organization in each area displays a global anteroposterior SF gradient and local patches. Its layout is constrained to that of the orientation map, and it is suggested that both maps share a common functional architecture. A17 and A18 are bound at the transition zone by another SF gradient involving the geniculo-cortical and the callosal pathways. A model based on principal component analysis shows that SF maps integrate three different SF-dependent channels. Two of these reflect the segregated excitatory input from X and Y geniculate cells to A17 and A18. The third one conveys a specific combination of excitatory and suppressive inputs to the visual cortex. In a manner coherent with anatomical and electrophysiological data, it is interpreted as originating from a subtype of Y geniculate cells.


Assuntos
Mapeamento Encefálico/métodos , Gatos/anatomia & histologia , Gatos/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Animais , Eletrofisiologia , Feminino , Masculino , Imagem Óptica , Estimulação Luminosa
3.
J Assoc Res Otolaryngol ; 19(2): 163-180, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302822

RESUMO

This study investigated to which extent the primary auditory cortex of young normal-hearing and mild hearing-impaired aged animals is able to maintain invariant representation of critical temporal-modulation features when sounds are submitted to degradations of fine spectro-temporal acoustic details. This was achieved by recording ensemble of cortical responses to conspecific vocalizations in guinea pigs with either normal hearing or mild age-related sensorineural hearing loss. The vocalizations were degraded using a tone vocoder. The neuronal responses and their discrimination capacities (estimated by mutual information) were analyzed at single recording and population levels. For normal-hearing animals, the neuronal responses decreased as a function of the number of the vocoder frequency bands, so did their discriminative capacities at the single recording level. However, small neuronal populations were found to be robust to the degradations induced by the vocoder. Similar robustness was obtained when broadband noise was added to exacerbate further the spectro-temporal distortions produced by the vocoder. A comparable pattern of robustness to degradations in fine spectro-temporal details was found for hearing-impaired animals. However, the latter showed an overall decrease in neuronal discrimination capacities between vocalizations in noisy conditions. Consistent with previous studies, these results demonstrate that the primary auditory cortex maintains robust neural representation of temporal envelope features for communication sounds under a large range of spectro-temporal degradations.


Assuntos
Córtex Auditivo/fisiopatologia , Perda Auditiva/fisiopatologia , Acústica , Animais , Cobaias , Ruído , Vocalização Animal
4.
Front Neuroanat ; 5: 68, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22275883

RESUMO

In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA