Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(11): 4843-4848, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804190

RESUMO

Despite being a fundamental electronic component for over 70 years, it is still possible to develop different transistor designs, including the addition of a diode-like Schottky source electrode to thin-film transistors. The discovery of a dependence of the source barrier height on the semiconductor thickness and derivation of an analytical theory allow us to propose a design rule to achieve extremely high voltage gain, one of the most important figures of merit for a transistor. Using an oxide semiconductor, an intrinsic gain of 29,000 was obtained, which is orders of magnitude higher than a conventional Si transistor. These same devices demonstrate almost total immunity to negative bias illumination temperature stress, the foremost bottleneck to using oxide semiconductors in major applications, such as display drivers. Furthermore, devices fabricated with channel lengths down to 360 nm display no obvious short-channel effects, another critical factor for high-density integrated circuits and display applications. Finally, although the channel material of conventional transistors must be a semiconductor, by demonstrating a high-performance transistor with a semimetal-like indium tin oxide channel, the range and versatility of materials have been significantly broadened.

2.
Nano Lett ; 17(11): 7015-7020, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29016145

RESUMO

A graphene ballistic rectifier is used in conjunction with an antenna to demonstrate a rectenna as a terahertz (THz) detector. A small-area (<1 µm2) local gate is used to adjust the Fermi level in the device to optimize the output while minimizing the impact on the cutoff frequency. The device operates in both n- and p-type transport regimes and shows a peak extrinsic responsivity of 764 V/W and a corresponding noise equivalent power of 34 pW Hz-1/2 at room temperature with no indications of a cutoff frequency up to 0.45 THz. The device also demonstrates a linear response for more than 3 orders of magnitude of input power due to its zero threshold voltage, quadratic current-voltage characteristics and high saturation current. Finally, the device is used to take an image of an optically opaque object at 0.685 THz, demonstrating potential in both medical and security imaging applications.

3.
Microsc Microanal ; 22(2): 440-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27050041

RESUMO

A new method to perform X-ray absorption correction for spherical particles in quantitative energy-dispersive X-ray spectroscopy in the scanning transmission electron microscope is presented. An absorption correction factor is derived and simulated data is presented encompassing a range of X-ray absorption conditions. Theoretical calculations are compared with experimental data of X-ray counts from Au nanoparticles to verify the derived methodology. The effect of detector elevation angle is considered and a comparison with thin-film absorption correction is included.

4.
Nano Lett ; 15(5): 3519-23, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25859743

RESUMO

We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 µm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.

5.
Sci Rep ; 7: 45196, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338060

RESUMO

We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 µm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits.

6.
Nat Commun ; 7: 11670, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27241162

RESUMO

Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm(2) V(-1) s(-1) is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW(-1) with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz(-1/2). Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA