Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 26(6): 2524-2537, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24907342

RESUMO

In addition to acting as photoprotective compounds, carotenoids also serve as precursors in the biosynthesis of several phytohormones and proposed regulatory signals. Here, we report a signaling process derived from carotenoids that regulates early chloroplast and leaf development. Biosynthesis of the signal depends on ζ-carotene desaturase activity encoded by the ζ-CAROTENE DESATURASE (ZDS)/CHLOROPLAST BIOGENESIS5 (CLB5) gene in Arabidopsis thaliana. Unlike other carotenoid-deficient plants, zds/clb5 mutant alleles display profound alterations in leaf morphology and cellular differentiation as well as altered expression of many plastid- and nucleus-encoded genes. The leaf developmental phenotypes and gene expression alterations of zds/clb5/spc1/pde181 plants are rescued by inhibitors or mutations of phytoene desaturase, demonstrating that phytofluene and/or ζ-carotene are substrates for an unidentified signaling molecule. Our work further demonstrates that this signal is an apocarotenoid whose synthesis requires the activity of the carotenoid cleavage dioxygenase CCD4.

2.
Ann Bot ; 110(6): 1253-60, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22975286

RESUMO

BACKGROUND AND AIMS: Prolonged storage generally reduces seed viability and vigour, although the rate of deterioration varies among species and environmental conditions. Here, we suggest a possible ageing molecular marker: At3g08030 mRNA. At3g08030 is a member of the DUF642 highly conserved family of cell-wall-associated proteins that is specific for spermatophytes. METHODS: At3g08030 expression was performed by RT-PCR and qRT-PCR analysis in seed samples differing in their rate of germination and final germination following a matrix priming and/or controlled deterioration (rapid ageing) treatment. KEY RESULTS: The At3g08030 gene transcript was present during the entire Arabidopsis thaliana plant life cycle and in seeds, during maturation, the ripening period and after germination. Matrix priming treatment increased the rate of germination of control seeds and seeds aged by controlled deterioration. Priming treatments also increased At3g08030 expression. To determine whether the orthologues of this gene are also age markers in other plant species, At3g08030 was cloned in two wild species, Ceiba aesculifolia and Wigandia urens. As in A. thaliana, the At3g08030 transcript was not present in aged seeds of the tested species but was present in recently shed seeds. A reduction in germination performance of the aged seeds under salt stress was determined by germination assays. CONCLUSIONS: At3g08030 mRNA detection in a dry seed lot has potential for use as a molecular marker for germination performance in a variety of plant species.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ceiba/genética , Germinação/genética , Hydrophyllaceae/genética , Sementes/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Sequência de Bases , Proteínas de Transporte/genética , Ceiba/efeitos dos fármacos , Ceiba/fisiologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Germinação/efeitos dos fármacos , Temperatura Alta , Hydrophyllaceae/efeitos dos fármacos , Hydrophyllaceae/fisiologia , Dados de Sequência Molecular , Folhas de Planta/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Plântula/genética , Sementes/efeitos dos fármacos , Sementes/fisiologia , Alinhamento de Sequência , Cloreto de Sódio/farmacologia , Fatores de Tempo
3.
Front Plant Sci ; 6: 341, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042133

RESUMO

Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA