Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioconjug Chem ; 33(6): 1049-1056, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34514776

RESUMO

The unique microenvironment of solid tumors, including desmoplasia within the extracellular matrix, enhanced vascular permeability, and poor lymphatic drainage, leads to an elevated interstitial fluid pressure which is a major barrier to drug delivery. Reducing tumor interstitial fluid pressure is one proposed method of increasing drug delivery to the tumor. The goal of this topical review is to describe recent work using focused ultrasound with or without microbubbles to modulate tumor interstitial fluid pressure, through either thermal or mechanical effects on the extracellular matrix and the vasculature. Furthermore, we provide a review on techniques in which ultrasound imaging may be used to diagnose elevated interstitial fluid pressure within solid tumors. Ultrasound-based techniques show high promise in diagnosing and treating elevated interstitial pressure to enhance drug delivery.


Assuntos
Líquido Extracelular , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Microbolhas , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Ultrassonografia
2.
Radiographics ; 40(2): 562-588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32125955

RESUMO

US is a powerful and nearly ubiquitous tool in the practice of interventional radiology. Use of contrast-enhanced US (CEUS) has gained traction in diagnostic imaging given the recent approval by the U.S. Food and Drug Administration (FDA) of microbubble contrast agents for use in the liver, such as sulfur hexafluoride lipid-type A microspheres. Adoption of CEUS by interventional radiologists can enhance not only procedure guidance but also preprocedure patient evaluation and assessment of treatment response across a wide spectrum of oncologic, vascular, and nonvascular procedures. In addition, the unique physical properties of microbubble contrast agents make them amenable as therapeutic vehicles in themselves, which can lay a foundation for future therapeutic innovations in the field in drug delivery, thrombolysis, and vascular flow augmentation. The purpose of this article is to provide an introduction to and overview of CEUS aimed at the interventional radiologist, highlighting its role before, during, and after frequently practiced oncologic and vascular interventions such as biopsy, ablation, transarterial chemoembolization, detection and control of hemorrhage, evaluation of transjugular intrahepatic portosystemic shunts (TIPS), detection of aortic endograft endoleak, thrombus detection and evaluation, evaluation of vascular malformations, lymphangiography, and percutaneous drain placement. Basic physical principles of CEUS, injection and scanning protocols, and logistics for practice implementation are also discussed. Early adoption of CEUS by the interventional radiology community will ensure rapid innovation of the field and development of future novel procedures. Online supplemental material is available for this article. ©RSNA, 2020.


Assuntos
Meios de Contraste/administração & dosagem , Ultrassonografia de Intervenção , Humanos , Microbolhas
3.
Eur Radiol ; 26(2): 417-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25925359

RESUMO

OBJECTIVES: To evaluate the efficiency of automatic respiratory gating (ARG) in reducing respiratory motion-induced artefacts from dynamic contrast-enhanced ultrasound (DCEUS) acquisitions and to assess the impact of ARG on DCEUS quantification parameters in patients with liver malignancies. METHODS: Twenty-five patients with liver metastasis were imaged with DCEUS. The lognormal indicator dilution model was fitted on time-intensity curves extracted from hepatic lesions with and without the use of ARG and DCEUS quantification parameters were extracted. The goodness of fit was assessed using the coefficient of determination (R (2) LN ). The effect respiration had on the data was assessed using the respiration amplitude (RA) metric. Pearson's correlation coefficient (r) was used to assess the correlation between R (2) LN and RA with and without the use of ARG. RESULTS: The RA parameter was strongly correlated with R (2) LN (r = -0.96, P = 7.412 × 10(-15)) and this correlation became weaker with ARG (r = -0.64, P = 5.449 × 10(-4)). ARG significantly influenced the values of the quantification parameters extracted (P ≤ 0.05). The RA was significantly decreased when ARG was used (P = 1.172 × 10(-6)). CONCLUSIONS: ARG has a significant impact on the quantification parameters extracted and it has been shown to improve the accuracy of liver lesion DCEUS. KEY POINTS: • ARG has a significant impact on DCEUS quantification parameters. • ARG can improve the modelling of liver lesion haemodynamics using DCEUS quantification. • ARG significantly reduces the respiration amplitude of DCEUS lesion time-intensity curves.


Assuntos
Artefatos , Meios de Contraste , Aumento da Imagem , Neoplasias Hepáticas/diagnóstico por imagem , Respiração , Idoso , Feminino , Humanos , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Reprodutibilidade dos Testes , Ultrassonografia
4.
Liver Transpl ; 20(5): 601-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24478135

RESUMO

The handling of donor organs frequently introduces air into the microvasculature, but little is known about the extent of the damage caused as a function of the embolism size and distribution. Here we introduced embolisms of different sizes into the portal vein, the hepatic artery, or both during the flushing stage of porcine liver procurement. The outcomes were evaluated during 3 hours of machine perfusion and were compared to the outcomes of livers with no embolisms. Dynamic contrast-enhanced ultrasound (DCEUS) was used to assess the perfusion quality, and it demonstrated that embolisms tended to flow mostly into the left lobe, occasionally into the right lobe, and rarely into the caudate lobe. Major embolisms could disrupt the flow entirely, whereas minor embolisms resulted in reduced or heterogeneous flow. Embolisms occasionally migrated to different regions of the same lobe and, regardless of their size, caused a general deterioration in the flow over time. Histological damage resulted primarily when both vessels of the liver were compromised, whereas bile production was diminished in livers that had arterial embolisms. Air embolisms produced a dose-dependent increase in vascular resistance and a decline in oxygen consumption. This is the first article to quantify the impact of air embolisms on microcirculation in an experimental model, and it demonstrates that air embolisms have the capacity to degrade the integrity of donor organs. The extent of organ damage is strongly dependent on the size and distribution of air embolisms. The diagnosis of embolism severity can be safely and easily made with DCEUS.


Assuntos
Embolia Aérea/fisiopatologia , Fígado/irrigação sanguínea , Fígado/fisiopatologia , Microcirculação , Alanina Transaminase/metabolismo , Animais , Peso Corporal , Meios de Contraste/química , Artéria Hepática/patologia , Masculino , Consumo de Oxigênio , Perfusão , Veia Porta/fisiopatologia , Suínos , Ultrassonografia , Resistência Vascular
5.
J Acoust Soc Am ; 135(5): 2545-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24815238

RESUMO

Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

6.
Ultrasound Med Biol ; 49(1): 186-202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36441029

RESUMO

Amplitude modulation (AM) suppresses tissue signals and detects microbubble signals in contrast-enhanced ultrasound (CEUS) and is often implemented with checkerboard apertures. However, possible crosstalk between transmitting and non-transmitting array elements may compromise tissue suppression in AM. Using AM aperture patterns other than the conventional checkerboard approach (one on, one off) may reduce the degree of crosstalk and increase the contrast-to-tissue-ratio (CTR) compared with conventional AM. Furthermore, previous studies have reported that the phase difference between the echoes in AM pulsing sequences may be used to segment tissue and microbubbles and improve tissue signal suppression and the CTR of CEUS images. However, the CTR of the image produced by alternative AM aperture patterns and the effect of segmentation approach on these alternative apertures have not been investigated. We evaluated a number of AM aperture patterns to find an optimal AM aperture pattern that provides the highest CTR. We found that the aperture that uses alternating groups of two elements, AM2, had the highest CTR for the probe evaluated. In addition, a segmentation technique based on echo phase differences (between the full and half-pulses, ΔΦAM, between the complementary half-pulses, ΔΦhalf, and the maximum of the two ΔΦmax) was also considered in the AM aperture optimization process. The segmentation approach increases the CTR by about 25 dB for all apertures. Finally, AM2 segmented with ΔΦmax had a 7-dB higher CTR in a flow phantom and a 6-dB higher contrast in a perfused pig liver than conventional AM segmented with ΔΦAM, and it is the optimal transmit aperture design.


Assuntos
Fígado , Microbolhas , Animais , Suínos , Ultrassonografia , Imagens de Fantasmas , Fígado/diagnóstico por imagem
7.
Acta Biomater ; 167: 121-134, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321529

RESUMO

Immunotherapy has revolutionized the treatment of dozens of cancers and became a standard of care for some tumor types. However, the majority of patients do not benefit from current immunotherapeutics and many develop severe toxicities. Therefore, the identification of biomarkers to classify patients as likely responders or non-responders to immunotherapy is a timely task. Here, we test ultrasound imaging markers of tumor stiffness and perfusion. Ultrasound imaging is non-invasive and clinically available and can be used both for stiffness and perfusion evaluation. In this study, we employed syngeneic orthotopic models of two breast cancers, a fibrosarcoma and a melanoma, to demonstrate that ultrasound-derived measures of tumor stiffness and perfusion (i.e., blood volume) correlate with the efficacy of immune checkpoint inhibition (ICI) in terms of changes in primary tumor volume. To modulate tumor stiffness and perfusion and thus, get a range of therapeutic outcomes, we employed the mechanotherapeutic tranilast. Mechanotherapeutics combined with ICI are advancing through clinical trials, but biomarkers of response have not been tested until now. We found the existence of linear correlations between tumor stiffness and perfusion imaging biomarkers as well as strong linear correlations between the stiffness and perfusion markers with ICI efficacy on primary tumor growth rates. Our findings set the basis for ultrasound biomarkers predictive of ICI therapy in combination with mechanotherapeutics. STATEMENT OF SIGNIFICANCE: Hypothesis: Monitoring Tumor Microenvironment (TME) mechanical abnormalities can predict the efficacy of immune checkpoint inhibition and provide biomarkers predictive of response. Tumor stiffening and solid stress elevation are hallmarks of tumor patho-physiology in desmoplastic tumors. They induce hypo-perfusion and hypoxia by compressing tumor vessels, posing major barriers to immunotherapy. Mechanotherapeutics is a new class of drugs that target the TME to reduce stiffness and improve perfusion and oxygenation. In this study, we show that measures of stiffness and perfusion derived from ultrasound shear wave elastography and contrast enhanced ultrasound can provide biomarkers of tumor response.


Assuntos
Técnicas de Imagem por Elasticidade , Melanoma , Humanos , Inibidores de Checkpoint Imunológico , Carga Tumoral , Melanoma/terapia , Biomarcadores , Imunoterapia/métodos , Perfusão , Microambiente Tumoral
8.
Ultrasound Med Biol ; 49(8): 1852-1860, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246049

RESUMO

OBJECTIVE: The objective of this work was to study microbubble-enhanced temperature elevation with high-intensity focused ultrasound (HIFU) at different acoustic pressures and under image guidance. The microbubbles were administered with either local or vascular injections (that mimic systemic injections) in perfused and non-perfused ex vivo porcine liver under ultrasound image guidance. METHODS: Porcine liver was insonified for 30 s with a single-element HIFU transducer (0.9 MHz, 0.413 ms, 82% duty cycle, focal pressures of 0.6-3.5 MPa). Contrast microbubbles were injected either locally or through the vasculature. A needle thermocouple at the focus measured temperature elevation. Diagnostic ultrasound (Philips iU22, C5-1 probe) guided placement of the thermocouple and delivery of microbubbles and monitored the procedure in real time. RESULTS: At lower acoustic pressures (0.6 and 1.2 MPa) in non-perfused liver, inertial cavitation of the injected microbubbles led to greater temperatures at the focus compared with HIFU-only treatments. At higher pressures (2.4 and 3.5 MPa) native inertial cavitation in the tissue (without injecting microbubbles) resulted in temperature elevations similar to those after injecting microbubbles. The heated area was larger when using microbubbles at all pressures. In the presence of perfusion, only local injections provided a sufficiently high concentration of microbubbles necessary for significant temperature enhancement. CONCLUSION: Local injections of microbubbles provide a higher concentration of microbubbles in a smaller area, avoiding acoustic shadowing, and can lead to higher temperature elevation at lower pressures and increase the size of the heated area at all pressures.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Hipertermia Induzida , Animais , Suínos , Microbolhas , Meios de Contraste , Ultrassonografia , Fígado/diagnóstico por imagem , Fígado/cirurgia , Hipertermia Induzida/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-35073259

RESUMO

Contrast-enhanced ultrasound (CEUS) imaging relies on distinguishing between microbubble and tissue echoes. Amplitude modulation (AM), a nonlinear pulsing scheme, has been developed to take advantage of the amplitude-dependent nonlinearity of microbubble echoes. However, with AM, tissue nonlinear propagation can also degrade the image contrast. Segmentation of CEUS images based on amplitude-dependent phase difference in the echoes, defined in this article as [Formula: see text], has been proposed as an additional method of enhancing contrast-to-tissue ratio as tissue is not expected to create the same degree of [Formula: see text]; however, this has not been robustly investigated. In this work, we evaluate the source of [Formula: see text] through simulations of unshelled versus shelled microbubble oscillation and simulations of nonlinear propagation in tissue. We then validate the simulated [Formula: see text] results with experimental [Formula: see text] measurements during in vitro scattering and imaging in a flow phantom. We show that shelled and unshelled microbubbles resulted in a [Formula: see text] with similar overall magnitude with some differences in trends, and that tissue echoes have a small yet detectable degree of [Formula: see text] due to nonlinear propagation. The results from this work can help inform optimal parameter selection for phase segmentation and implementation on a clinical scanner.


Assuntos
Meios de Contraste , Microbolhas , Imagens de Fantasmas , Ultrassonografia/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-33428569

RESUMO

Contrast-enhanced ultrasound (CEUS) is a real-time imaging technique that allows the visualization of organ and tumor microcirculation by utilizing the nonlinear response of microbubbles. Nonlinear pulsing schemes are used exclusively in CEUS imaging modes in modern scanners. One important aspect of nonlinear pulsing schemes is the near-complete elimination of the linear signals that originate from tissue. Up until now, no study has investigated the performance of Verasonics scanners in eliminating the linear signals during CEUS and, by extension, the optimal pulsing sequences for performing CEUS. The aim of this article was to investigate linear signal cancellation of the Verasonics scanner performing nonlinear pulsing schemes with two different probes (L7-4 linear array and C5-2 convex array). We have considered two pulsing schemes: pulse inversion (PI) and amplitude modulation (AM). We have also compared our results from the Verasonics scanner with a clinical scanner (Philips iU22). We found that the linear signal cancellation of the transmitted pulse by Verasonics scanner was ~40 dB in AM mode and ~30 dB in PI mode when operated at 0.06 MI. The linear signal cancellation performance of Verasonics scanner was comparable with Philips iU22 scanner in focused AM mode and on average 3 dB better than Philips iU22 scanner in focused PI mode.


Assuntos
Meios de Contraste , Neoplasias , Humanos , Microbolhas , Imagens de Fantasmas , Ultrassonografia
11.
Artigo em Inglês | MEDLINE | ID: mdl-33112743

RESUMO

The ability to monitor cavitation activity during ultrasound and microbubble-mediated procedures is of high clinical value. However, there has been little reported literature comparing the cavitation characteristics of different clinical microbubbles, nor have current clinical scanners been used to perform passive cavitation detection in real time. The goal of this work was to investigate and characterize standard microbubble formulations (Optison, Sonovue, Sonazoid, and a custom microbubble made with similar components as Definity) with a custom passive cavitation detector (two confocal single-element focused transducers) and with a Philips EPIQ scanner with a C5-1 curvilinear probe passively listening. We evaluated three different methods for investigating cavitation thresholds, two from previously reported work and one developed in this work. For all three techniques, it was observed that the inertial cavitation thresholds were between 0.1 and 0.3 MPa for all agents when detected with both systems. Notably, we found that most microbubble formulations in bulk solution behaved generally similarly, with some differences. We show that these characteristics and thresholds are maintained when using a diagnostic ultrasound system for detecting cavitation activity. We believe that a systematic evaluation of the frequency response of the cavitation activity of different microbubbles in order to inform real-time therapy monitoring using a clinical ultrasound device could make an immediate clinical impact.


Assuntos
Microbolhas , Transdutores , Imagens de Fantasmas , Ultrassonografia
12.
Ultrasound Med Biol ; 47(11): 3211-3220, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34362584

RESUMO

Ultrasound and microbubbles are useful for both diagnostic imaging and targeted drug delivery, making them ideal conduits for theranostic interventions. Recent reports have indicated the preclinical success of microbubble cavitation for enhancement of chemotherapy in abdominal tumors; however, there have been limited studies and variable efficacy in clinical implementation of this technique. This is likely because in contrast to the high pressures and long cycle lengths seen in successful preclinical work, current clinical implementation of microbubble cavitation for drug delivery generally involves low acoustic pressures and short cycle lengths to fit within clinical guidelines. To translate the preclinical parameter space to clinical adoption, a relevant safety study in a healthy large animal is required. Therefore, the purpose of this work was to evaluate the safety of ultrasound cavitation treatment (USCTx) in a healthy porcine model using a modified Philips EPIQ with S5-1 as the focused source. We performed USCTx on eight healthy pigs and monitored health over the course of 1 wk. We then performed an acute study of USCTx to evaluate immediate tissue damage. Contrast-enhanced ultrasound exams were performed before and after each treatment to investigate perfusion changes within the treated areas, and blood and urine were evaluated for liver damage biomarkers. We illustrate, through quantitative analysis of contrast-enhanced ultrasound data, blood and urine analyses and histology, that this technique and the parameter space considered are safe within the time frame evaluated. With its safety confirmed using a clinical-grade ultrasound scanner and contrast agent, USCTx could be easily translated into clinical trials for improvement of chemotherapy delivery. This represents the first safety study assessing the bio-effects of microbubble cavitation from relevant ultrasound parameters in a large animal model.


Assuntos
Meios de Contraste , Microbolhas , Animais , Sistemas de Liberação de Medicamentos , Fígado/diagnóstico por imagem , Suínos , Ultrassonografia
13.
Invest Radiol ; 55(10): 643-656, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32898356

RESUMO

OBJECTIVES: Contrast enhanced ultrasound (CEUS) is now broadly used clinically for liver lesion detection and characterization. Obstacles to the efforts to quantify perfusion with CEUS have been the lack of a standardized approach and undocumented reproducibility. The use of multiple scanners and different analysis software packages compounds the degree of variability. Our objectives were to standardize a CEUS-based approach for quantification of perfusion-related parameters of liver lesions and to evaluate the variability of bolus transit parameters (rise time [RT], mean transit time [MTT], peak intensity, and area under the curve) obtained from various clinical ultrasound scanners and analysis software. MATERIALS AND METHODS: Bolus transit as a way of evaluating perfusion has been investigated both in vivo and in vitro in the past but without establishing its reproducibility. We developed a tissue flow phantom that produces time-intensity curves very similar to those extracted from clinical cine loops of liver lesions. We evaluated the variability of the bolus transit parameters with 4 commercial scanners (Philips iU22, Philips EPIQ, GE LOGIQ E9, and Siemens Acuson Sequoia) and 3 different analysis software packages in multiple trials (15 per scanner). RESULTS: The variability (coefficient of variation) from repeated trials and while using a single scanner and software was less than 8% for RT, less than 12% for MTT, less than 49% for peak intensity, and less than 50% for area under the curve. Currently, it is not possible to directly compare amplitude values from different scanners and analysis software packages owing to the arbitrary linearization algorithm used among manufacturers; however, it is possible for time parameters (RT and MTT). The variability when using a different scanner with the same analysis software package was less than 9% for RT and less than 21% for MTT. The variability when using a different analysis software with the same scanner was less than 9% for RT and less than 15% for MTT. In all the evaluations we have performed, RT is the least variable parameter, while MTT is only slightly more variable. CONCLUSIONS: The present study will lay the groundwork for multicenter patient evaluations with CEUS quantification of perfusion-related parameters with the bolus transit technique. When using the protocol and method developed here, it is possible to perform perfusion quantification on different scanners and analysis software and be able to compare the results. The current work is the first study that presents a comparison of bolus transit parameters derived from multiple systems and software packages.


Assuntos
Meios de Contraste , Software , Ultrassonografia/instrumentação , Biomarcadores/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Imagens de Fantasmas , Reprodutibilidade dos Testes
14.
Front Pharmacol ; 11: 584344, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101038

RESUMO

Despite advances in interventional procedures and chemotherapeutic drug development, hepatocellular carcinoma (HCC) is still the fourth leading cause of cancer-related deaths worldwide with a <30% 5-year survival rate. This poor prognosis can be attributed to the fact that HCC most commonly occurs in patients with pre-existing liver conditions, rendering many treatment options too aggressive. Patient survival rates could be improved by a more targeted approach. Ultrasound-induced cavitation can provide a means for overcoming traditional barriers defining drug uptake. The goal of this work was to evaluate preclinical efficacy of image-guided, cavitation-enabled drug delivery with a clinical ultrasound scanner. To this end, ultrasound conditions (unique from those used in imaging) were designed and implemented on a Philips EPIQ and S5-1 phased array probe to produced focused ultrasound for cavitation treatment. Sonovue® microbubbles which are clinically approved as an ultrasound contrast agent were used for both imaging and cavitation treatment. A genetically engineered mouse model was bred and used as a physiologically relevant preclinical analog to human HCC. It was observed that image-guided and targeted microbubble cavitation resulted in selective disruption of the tumor blood flow and enhanced doxorubicin uptake and penetration. Histology results indicate that no gross morphological damage occurred as a result of this process. The combination of these effects may be exploited to treat HCC and other challenging malignancies and could be implemented with currently available ultrasound scanners and reagents.

15.
Ultrasound Med Biol ; 46(3): 498-517, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31813583

RESUMO

Microbubble contrast agents were introduced more than 25 years ago with the objective of enhancing blood echoes and enabling diagnostic ultrasound to image the microcirculation. Cardiology and oncology waited anxiously for the fulfillment of that objective with one clinical application each: myocardial perfusion, tumor perfusion and angiogenesis imaging. What was necessary though at first was the scientific understanding of microbubble behavior in vivo and the development of imaging technology to deliver the original objective. And indeed, for more than 25 years bubble science and imaging technology have evolved methodically to deliver contrast-enhanced ultrasound. Realization of the basic bubbles properties, non-linear response and ultrasound-induced destruction, has led to a plethora of methods; algorithms and techniques for contrast-enhanced ultrasound (CEUS) and imaging modes such as harmonic imaging, harmonic power Doppler, pulse inversion, amplitude modulation, maximum intensity projection and many others were invented, developed and validated. Today, CEUS is used everywhere in the world with clinical indications both in cardiology and in radiology, and it continues to mature and evolve and has become a basic clinical tool that transforms diagnostic ultrasound into a functional imaging modality. In this review article, we present and explain in detail bubble imaging methods and associated artifacts, perfusion quantification approaches, and implementation considerations and regulatory aspects.


Assuntos
Meios de Contraste , Microbolhas , Ultrassonografia/métodos , Humanos
16.
Ultrasound Med Biol ; 45(3): 833-845, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30638695

RESUMO

Ultrasound-mediated drug delivery using the mechanical action of oscillating and/or collapsing microbubbles has been studied on many different experimental platforms, both in vitro and in vivo; however, the mechanisms remain to be elucidated. Many groups use sterile, enclosed chambers, such as Opticells and Clinicells, to optimize acoustic parameters in vitro needed for effective drug delivery in vivo, as well as for mechanistic investigation of sonoporation or the use of sound to permeate cell membranes. In these containers, cell monolayers are seeded on one side, and the remainder of the volume is filled with a solution containing microbubbles and a model drug. Ultrasound is then applied to study the effect of different parameters on model drug uptake in cell monolayers. Despite the simplicity of this system, the field has been unable to appropriately address what parameters and microbubble concentrations are most effective at enhancing drug uptake and minimizing cellular toxicity. In this work, a common in vitro sonoporation experimental setup was characterized through quantitative analysis of microbubble-dependent acoustic attenuation in combination with high-frame-rate and high-resolution imaging of bubble activity during sonoporation pulse sequences. The goal was to visualize the effect that ultrasound parameters have on microbubble activity. It was observed that under literature-derived sonoporation conditions (0.1-1 MPa, 20-1000 cycles and 10,000 to 10,000,000 microbubbles/mL), there is strong and non-linear acoustic attenuation, as well as bubble destruction, gas diffusion and bubble motion resulting in spatiotemporal pressure and concentration gradients. Ultimately, it was found that the acoustic conditions in common in vitro sonoporation setups are much more complex and confounding than often assumed.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Microbolhas , Sonicação/métodos , Sistemas de Liberação de Medicamentos , Técnicas In Vitro , Ultrassonografia/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-30951464

RESUMO

Recent advances in ultrafast contrast imaging have facilitated innovations, such as superresolution imaging and ultrafast contrast-enhanced Doppler imaging. Combining plane and diverging wave imaging (PWI/DWI) with tissue harmonic imaging (THI) may offer improvements in image quality in applications such as 3-D THI and harmonic color flow. However, no studies have reported simulations of the nonlinear acoustic fields produced by diagnostic arrays in either plane or diverging wave mode. The aim of this study is to model three typical diagnostic arrays that are used in clinical practice and research, Verasonics L11-4v linear array, C5-2v convex array, and P4-2v phased array with the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. We have two specific objectives: first, to investigate whether there is increased bubble destruction due to the nature of the plane and diverging fields in contrast imaging; and second, to investigate the feasibility of combining PWI/DWI and THI by quantifying the second harmonic generated by these fields. We showed in linear simulations that using such arrays for ultrafast contrast imaging produced pressures that are greater in the near field and lower in the far field than those of focused beams and thus may induce more near-field bubble destruction. In nonlinear simulations, the second harmonic produced by ultrafast THI was found to be 2-16 dB lower than that of focused beams for all arrays considered when operated at the same MI. This moderate difference of the second harmonic between PWI/DWI and focused ultrasound suggests that it is feasible to combine PWI/DWI and THI.


Assuntos
Acústica , Simulação por Computador , Ultrassonografia/instrumentação , Desenho de Equipamento , Processamento de Imagem Assistida por Computador
18.
IEEE Trans Med Imaging ; 35(2): 622-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26452276

RESUMO

Confidence in the accuracy of dynamic contrast enhanced ultrasound (DCEUS) quantification parameters is imperative for the correct diagnosis of liver lesion perfusion characteristics. An important source of uncertainty in liver DCEUS acquisitions is artifacts introduced by respiratory motion. The objective of this study is to construct a respiratory motion simulation model (RMSM) of dual contrast imaging mode acquisitions of liver lesions in order to evaluate an algorithm for automatic respiratory gating (ARG). The respiratory kinetics as well as the perfusion models of the liver lesion and parenchyma used by the RMSM were solely derived from clinical data. The quality of fit (of the DCEUS data onto the bolus kinetics model) depends on the respiration amplitude. Similar trends in terms of quality of fit as a function of respiration amplitude were observed from RMSM and clinical data. The errors introduced on the DCEUS quantification under the influence of respiration were evaluated. The RMSM revealed that the error in the liver lesion DCEUS quantification parameters significantly decreased (p < 0.001) from a maximum of 32.3% to 6.2% when ARG was used. The use of RMSM clearly demonstrates the capability of the ARG algorithm in significantly reducing errors introduced from both in-plane and out-of-plane respiratory motion.


Assuntos
Meios de Contraste/uso terapêutico , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Ultrassonografia/métodos , Idoso , Algoritmos , Simulação por Computador , Feminino , Humanos , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade
19.
Ultrasound Med Biol ; 42(11): 2676-2686, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27554068

RESUMO

Localized drug delivery and uptake can benefit from the combined action of ultrasound and microbubbles at a specific site. Some of the possible mechanisms suggested are vessel poration and/or cell poration, but the exact acoustic parameters that trigger those phenomena remain unknown. Ex vivo machine perfusion of human-sized organs is a technique that provides an ideal environment for pre-clinical investigations with high physiologic relevance not possible with in vitro experiments. In this work, ex vivo machine-perfused pig livers were combined with an image-guided therapy system to investigate microvascular flow changes caused by the interaction of ultrasound-driven microbubbles with the vasculature. The effects of acoustic pressure (1.7-4 MPa peak negative pressures) and number of cycles (1000 or 20 cycles) were examined. Perfusion changes caused by the action of ultrasound on microbubbles in the microcirculation were qualitatively and quantitatively assessed with contrast-enhanced ultrasound and used as a metric of the extent of vessel perforation, thus, extravasation. Areas that were exposed to peak negative pressures above 1.7 MPa underwent a detectable and irreversible perfusion change. Complete devascularization of the area exposed to ultrasound was observed at much larger acoustic pressures (∼4 MPa). Shorter acoustic pulses (20 cycles) produced markedly fewer perfusion changes than longer pulses (1000 cycles) under the same acoustic amplitude exposure.


Assuntos
Fígado/diagnóstico por imagem , Microbolhas/efeitos adversos , Microvasos/diagnóstico por imagem , Microvasos/lesões , Ondas Ultrassônicas/efeitos adversos , Ultrassonografia/métodos , Animais , Meios de Contraste , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Aumento da Imagem/métodos , Fígado/irrigação sanguínea , Suínos
20.
Artigo em Inglês | MEDLINE | ID: mdl-25585401

RESUMO

Ultrasound and microbubbles are often used to enhance drug delivery and the suggested mechanisms are extravasation and sonoporation. Drug delivery schemes with ultrasound and microbubbles at both low and high acoustic amplitudes have been suggested. A diagnostic ultrasound scanner may play a double role as both an imaging and a therapy device. It was not possible to accurately measure microbubble response with an ultrasound scanner for a large range of acoustic pressures and microbubble concentrations until now, mainly because of signal saturation issues. A method for continuously adjusting the receive gain of a scanner and limiting signal saturation was developed to accurately measure backscattered echoes from microbubbles for mechanical indexes (MIs) up to 2.1. The intensity of backscattered echoes from microbubbles increased quarticly with MI without reaching any limit. The signal intensity from microbubbles was found to be linear with concentration at both low and high MIs. However, at very high concentrations, acoustic shadowing occurs which limits the delivered acoustic pressure in deeper areas. The contrastto- tissue ratio was also measured and found to stay constant with MI. These results can be used to better guide drug delivery approaches and to also develop imaging techniques for therapy procedures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA