Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2346071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774496

RESUMO

This current study investigates the effect of Direct Energy Deposition (DED) process conditions on the properties and microstructure of M300 maraging steel samples. The investigation centers on two key factors: laser power and deposition environment. The microstructure of this tool steel is analyzed by computing the Primary Cellular Arm Spacing. The findings revealed a significant influence of both inert atmosphere and laser power on cooling conditions. These different cooling rates influence the phase content as demonstrated by X-Ray Diffraction and Electron Backscatter Diffraction measurements. It was demonstrated the presence of different content of residual austenite at cell boundaries. These distinct microstructural features caused variations in the hardness values of the printed samples. Furthermore, a direct aging heat treatment was implemented, that was chosen from Differential Scanning Calorimetry measurements results. This heat treatment proves effective in achieving consistent hardness increases and eliminated the differences among samples built in different process conditions. This outcome suggests the possibility of selecting the most economically viable DED parameters for optimal results.


This study innovatively explores how DED process conditions impact M300 maraging steel microstructure, revealing crucial insights for optimizing properties and achieving consistent results, ensuring economically viable applications.

2.
Materials (Basel) ; 16(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770091

RESUMO

Their high strength-to-weight ratio, good corrosion resistance and excellent thermal and electrical conductivity have exponentially increased the interest in aluminium alloys in the context of laser-based powder bed fusion (PBF-LB/M) production. Although Al-based alloys are the third most investigated category of alloys in the literature and the second most used in industry, their processing by PBF-LB/M is often hampered by their considerable solidification shrinkage, tendency to oxidation, high laser reflectivity and poor powder flowability. For these reasons, high-strength Al-based alloys traditionally processed by conventional procedures have often proved to be unprintable with additive technology, so the design and development of new tailored Al-based alloys for PBF-LB/M production is necessary. The aim of the present work is to explore all the challenges encountered before, during and after the PBF-LB/M processing of Al-based alloys, in order to critically analyse the solutions proposed in the literature and suggest new approaches for addressing unsolved problems. The analysis covers the critical aspects in the literature as well as industrial needs, industrial patents published to date and possible future developments in the additive market.

3.
Materials (Basel) ; 16(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37629801

RESUMO

The microstructures of intermetallic γ-titanium aluminide (TiAl) alloys are subjected to a certain degree of Al evaporation when processed by electron beam powder bed fusion (EB-PBF). The magnitude of the Al-loss is mainly correlated with the process parameters, and highly energetic parameters produce significant Al evaporation. The Al-loss leads to different microstructures, including the formation of inhomogeneous banded structures, thus negatively affecting its mechanical performance. For this reason, the current work deals with creating EB-PBFed TiAl capsules with the inner part produced using only the pre-heating step and melting parameters with low energetic parameters applying high beam speed from 5000 to 3000 mm/s. This approach is investigated to reduce the Al-loss and microstructure inhomogeneity after hot isostatic pressing (HIP). The results showed that the HIP treatment effectively densified the capsules obtaining a relative density of around 100%. After HIP, the capsules produced with the inner part melted at 3000 mm/s presented a lower area shrinkage (around 6.6%) compared to the capsules produced using only the pre-heating step in the core part (around 20.7%). The different magnitudes of shrinkage derived from different levels of residual porosity consolidated during the HIP process. The HIPed capsules exhibited the presence of previous particle boundaries (PPBs), covered by α2 phases. Notably, applying low energetic parameters to melt the core partially eliminates the particles' surface, thus reducing the PPBs formation. In this case, the capsules melted with low energetic parameters (3000 mm/s) exhibited α2 concentration of 3.5% and an average size of 13 µm compared to the capsules produced with the pre-heating step in the inner part with an α2 around 5.7% and an average size around 23 µm. Moreover, the Al-loss of the capsules was drastically limited, as determined by X-ray fluorescence (XRF) analysis. More in detail, the capsules produced with the pre-heating step reported an atomic percentage of Al of 48.75, while using low energetic melting parameters led to 48.36. This result was interesting, considering that the massive samples produced with standard parameters (so more energetic ones) revealed atomic Al percentage from 48.04 to 47.70. Finally, the recycled small particles showed a higher fraction of α2 phases with respect to the coarse particles, as determined by X-ray diffraction (XRD).

4.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363164

RESUMO

Laser powder bed fusion (LPBF) is an additive manufacturing technology that implies using metal powder as a raw material. The powders suitable for this kind of technology must respect some specific characteristics. Controlled gas atomization and post-processing operations can strongly affect the final properties of the powders, and, as a consequence, the characteristics of the bulk components. In fact, a complete characterization of the powders is mandatory to fully determine their properties. Beyond the most used tests, such as the volume particle size distribution (PSD) and flowability, the PSD number, the Hausner ratio and the oxidation level can give additional information otherwise not detectable. The present work concerns the complete characterization of two AlSi10Mg powders: a commercial-grade gas atomized powder and a laboratory-scale gas atomized counterpart. The laboratory-scale gas atomization allows to better manage the amount of the fine particles and the oxidation level. As a consequence, a higher particle packing can be reached with an increase in the final density and tensile strength of the LPBF bulk samples.

5.
Materials (Basel) ; 15(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591456

RESUMO

Among recently developed high-strength and lightweight alloys, the high-performance Scalmalloy® certainly stands out for laser powder bed fusion (LPBF) production. The primary goal of this study was to optimize the Scalmalloy® LPBF process parameters by setting power values suitable for the use of lab-scale machines. Despite that these LPBF machines are commonly characterized by considerably lower maximum power values (around 100 W) compared to industrial-scale machines (up to 480 W), they are widely used when quick setup and short processing time are needed and a limited amount of powder is available. In order to obtain the optimal process parameters, the influence of volumetric energy density (VED) on the sample porosity, microstructure and mechanical properties was accurately studied. The obtained results reveal the stability of the microstructural and mechanical behaviour of the alloy for VEDs higher than 175 Jmm-3. In this way, an energy-and-time-saving choice at low VEDs can be taken for the LPBF production of Scalmalloy®. After identifying the low-power optimized process parameters, the effects of the heat treatment on the microstructural and mechanical properties were investigated. The results prove that low-VED heat-treated samples produced with an LPBF lab-scale machine can achieve outstanding mechanical performance compared with the results of energy-intensive industrial production.

6.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744126

RESUMO

This work focuses on the effect of different heat treatments on the Ti-6Al-4V alloy processed by means of electron beam melting (EBM). Super ß-transus annealing was conducted at 1050 °C for 1 h on Ti-6Al-4V samples, considering two different cooling paths (furnace cooling and water quenching). This heat treatment induces microstructural recrystallization, thus reducing the anisotropy generated by the EBM process (columnar prior-ß grains). Subsequently, the annealed furnace-cooled and water-quenched samples were aged at 540 °C for 4 h. The results showed the influence of the aging treatment on the microstructure and the mechanical properties of the annealed EBM-produced Ti-6Al-4V. A comparison with the traditional processed heat-treated material was also conducted. In the furnace-cooled specimens consisting of lamellar α+ß, the aging treatment improved ductility and strength by inducing microstructural thickening of the α laths and reducing the ß fraction. The effect of the aging treatment was also more marked in the water-quenched samples, characterized by high tensile strengths but limited ductility due to the presence of martensite. In fact, the aging treatment was effective in the recovery of the ductility loss, maintaining high tensile strength properties due to the variation in the relative number of α/α' interfaces resulting from α' decomposition. This study, therefore, offers an in-depth investigation of the potential beneficial effects of the aging treatment on the microstructure and mechanical properties of the EBM-processed super ß-transus heat-treated Ti-6Al-4V alloy under different cooling conditions.

7.
Materials (Basel) ; 14(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34683749

RESUMO

Conventionally processed precipitation hardening aluminum alloys are generally treated with T6 heat treatments which are time-consuming and generally optimized for conventionally processed microstructures. Alternatively, parts produced by laser powder bed fusion (L-PBF) are characterized by unique microstructures made of very fine and metastable phases. These peculiar features require specifically optimized heat treatments. This work evaluates the effects of a short T6 heat treatment on L-PBF AlSi7Mg samples. The samples underwent a solution step of 15 min at 540 °C followed by water quenching and subsequently by an artificial aging at 170 °C for 2-8 h. The heat treated samples were characterized from a microstructural and mechanical point of view and compared with both as-built and direct aging (DA) treated samples. The results show that a 15 min solution treatment at 540 °C allows the dissolution of the very fine phases obtained during the L-PBF process; the subsequent heat treatment at 170 °C for 6 h makes it possible to obtain slightly lower tensile properties compared to those of the standard T6. With respect to the DA samples, higher elongation was achieved. These results show that this heat treatment can be of great benefit for the industry.

8.
Materials (Basel) ; 14(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576395

RESUMO

The production of dense samples produced by laser powder bed fusion (LPBF) is mainly determined by the choice of the best combination of construction parameters. Parameter optimization is the first step in the definition of an LPBF process for new alloys or systems. With this goal, much research uses the single scan track (SST) approach for a preliminary parameter screening. This study investigates the definition of a computer-aided method by using an automatic on top analysis for the characterization of SSTs, with the aim of finding ranges of laser power and scan speed values for massive production. An innovative algorithm was implemented to discard non-continuous scans and to measure the SSTs quality using three regularity indexes. Only open source software were used to fine tune this approach. The obtained results on Al4Cu and AlSi10Mg realized with two different commercial systems suggest that it is possible to use this method to easily narrow the process parameter window that allows the production of dense samples.

9.
Materials (Basel) ; 14(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34640002

RESUMO

The paper deals with the evolution of the microstructure of AlSi10Mg alloy obtained by laser powder bed fusion (LPBF), as a function of the post-processing heat treatment temperature. This was approached by complementary methods including FE-scanning electron microscopy, scanning Kelvin probe force microscopy and exo-electron emission techniques. The fast cooling rate of the LPBF process as compared to traditional casting produces a very fine microstructure with high mechanical properties and corrosion resistance. However, the LPBF-AlSi10Mg alloy can be susceptible to selective corrosion at the edge of the melt pools generated by the laser scan tracks. Post-process thermal treatments of the Al alloy induce a marked modification of the silicon network at melt pool edges, in particular at high temperature such as 400 °C. It was found that this is associated to a more homogeneous distribution of Volta potential. Analysis of exo-electron emission confirms the silicon diffusion during thermal treatment. The modification of the silicon network structure of the LPBF-AlSi10Mg during thermal treatment reduces the susceptibility to selective corrosion.

10.
Materials (Basel) ; 12(3)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764476

RESUMO

Hastelloy X (HX) is a Ni-based superalloy which is employed to produce gas turbine and gas-cooled reactor sectors due to its outstanding oxidation resistance and high tensile strength at high temperatures. This alloy can be processed by laser powder bed fusion (LPBF) fabricating complex geometries in a single step. However, post-processing thermal treatments must be applied to generate a suitable microstructure for high-temperature applications. The investigation reports the microstructure evolution of LPBF HX samples under specific post-processing treatments. A hot isostatic pressing (HIP) treatment can close the internal cracks and reduce the residual porosity (less than 0.1%). Moreover, the HIP-triggered recrystallization generated equiaxed grains, while the slow cooling rate generated a film of intergranular carbides (Mo-rich M6C and Cr-rich M23C6) and intragranular carbides (Mo-rich M6C carbides). Therefore, a solution annealing was performed to dissolve the film of carbides which may reduce the ductility. The post solution annealed material consisted of equiaxed grains with ASTM grain size number mainly 4.5-5.5 and inter/intragranular Mo-rich M6C carbides. The microstructure is highly comparable with solution annealed wrought HX alloy. Finally, after simulating short thermal exposure at 745 °C for 6 h, a significant formation of Cr-rich M23C6 carbides was observed strengthening the LPBF HX alloy.

11.
Materials (Basel) ; 12(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934694

RESUMO

Aluminum alloys are key materials in additive manufacturing (AM) technologies thanks to their low density that, coupled with the possibility to create complex geometries of these innovative processes, can be exploited for several applications in aerospace and automotive fields. The AM process of these alloys had to face many challenges because, due to their low laser absorption, high thermal conductivity and reduced powder flowability, they are characterized by poor processability. Nowadays mainly Al-Si alloys are processed, however, in recent years many efforts have been carried out in developing new compositions specifically designed for laser based powder bed AM processes. This paper reviews the state of the art of the aluminum alloys used in the laser powder bed fusion process, together with the microstructural and mechanical characterizations.

12.
Materials (Basel) ; 11(1)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29324658

RESUMO

Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M6C, M12C and MnCm type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process.

13.
J Appl Biomater Funct Mater ; 16(2): 57-67, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28967051

RESUMO

The mechanical properties and biocompatibility of titanium alloy medical devices and implants produced by additive manufacturing (AM) technologies - in particular, selective laser melting (SLM), electron beam melting (EBM) and laser metal deposition (LMD) - have been investigated by several researchers demonstrating how these innovative processes are able to fulfil medical requirements for clinical applications. This work reviews the advantages given by these technologies, which include the possibility to create porous complex structures to improve osseointegration and mechanical properties (best match with the modulus of elasticity of local bone), to lower processing costs, to produce custom-made implants according to the data for the patient acquired via computed tomography and to reduce waste.


Assuntos
Ligas , Titânio , Ligas/química , Ligas/uso terapêutico , Titânio/química , Titânio/uso terapêutico
14.
J Appl Biomater Funct Mater ; 16(1): 14-22, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29027180

RESUMO

BACKGROUND: Silicon carbide ceramics obtained by reactive infiltration of silicon (SRI) have many industrial applications especially involving severe and high temperature conditions. In this study, the oxidation behavior in air of Si-SiC-ZrB2 systems at a high temperature (1500°C) for dwelling times of up to 48 hours was examined. METHODS: The oxidation process was analyzed on the basis of elemental maps and X-ray diffraction patterns taken, respectively, on the core and on the surface of the specimens, together with weight gains and the average thicknesses of the resulting scale. Further, flexural strength at room temperature was examined as a function of different oxidation times. RESULTS: The main chemical reactions and phase transformations involved in the oxidation process are reported. Several oxides were detected on the surface: zirconia, silica, zircon and 3-zirconium monoxide. All of the samples showed a parabolic oxidation kinetics, suggesting that the controlling mechanism was the diffusion; however, even after 48 hours, the oxidation process was not finished - indeed, all of the samples continued to gain weight. CONCLUSIONS: The oxidation of Si-SiC-ZrB2 material produced via SRI was slower compared with previously investigated ZrB2-SiC composites processed with a different techniques and tested in similar conditions. The oxidation mechanism was found to be consistent with the convection cells model.


Assuntos
Compostos de Boro/química , Compostos Inorgânicos de Carbono/química , Compostos de Silício/química , Silício/química , Zircônio/química , Temperatura Alta , Oxirredução
15.
Materials (Basel) ; 10(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28772436

RESUMO

The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA