Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(19): 34684-34692, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242475

RESUMO

We experimentally study the interaction between intense infrared few-cycle laser pulses and an ultrathin (∼2 µm) flat liquid sheet of isopropanol running in vacuum. We observe a rapid decline in transmission above a critical peak intensity of 50 TW/cm2 of the initially transparent liquid sheet, and the emission of a plume of material. We find both events are due to the creation of a surface plasma and are similar to processes observed in dielectric solids. After calculating the electron density for different laser peak intensities, we find an electron scattering rate of 0.3 fs-1 in liquid isopropanol to be consistent with our data. We study the dynamics of the plasma plume to find the expansion velocity of the plume front.

2.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170468, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30929634

RESUMO

High harmonic generation (HHG) of an intense laser pulse is a highly nonlinear optical phenomenon that provides the only proven source of tabletop attosecond pulses, and it is the key technology in attosecond science. Recent developments in high-intensity infrared lasers have extended HHG beyond its traditional domain of the XUV spectral range (10-150 eV) into the soft X-ray regime (150 eV to 3 keV), allowing the compactness, stability and sub-femtosecond duration of HHG to be combined with the atomic site specificity and electronic/structural sensitivity of X-ray spectroscopy. HHG in the soft X-ray spectral region has significant differences from HHG in the XUV, which necessitate new approaches to generating and characterizing attosecond pulses. Here, we examine the challenges and opportunities of soft X-ray HHG, and we use simulations to examine the optimal generating conditions for the development of high-flux, attosecond-duration pulses in the soft X-ray spectral range. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA