RESUMO
BACKGROUND: Thoracic aortopathy associates with extracellular matrix remodeling and altered biomechanical properties. We sought to quantify the natural history of thoracic aortopathy in a common mouse model and to correlate measures of wall remodeling such as aortic dilatation or localized mural defects with evolving microstructural composition and biomechanical properties of the wall. METHODS: We combined a high-resolution multimodality imaging approach (panoramic digital image correlation and optical coherence tomography) with histopathologic examinations and biaxial mechanical testing to correlate spatially, for the first time, macroscopic mural defects and medial degeneration within the ascending aorta with local changes in aortic wall composition and mechanical properties. RESULTS: Findings revealed strong correlations between local decreases in elastic energy storage and increases in circumferential material stiffness with increasing proximal aortic diameter and especially mural defect size. Mural defects tended to exhibit a pronounced biomechanical dysfunction that is driven by an altered organization of collagen and elastic fibers. CONCLUSIONS: While aneurysmal dilatation is often observed within particular segments of the aorta, dissection and rupture initiate as highly localized mechanical failures. We show that wall composition and material properties are compromised in regions of local mural defects, which further increases the dilatation and overall structural vulnerability of the wall. Identification of therapies focused on promoting robust collagen accumulation may protect the wall from these vulnerabilities and limit the incidence of dissection and rupture.
Assuntos
Angiotensina II , Aneurisma da Aorta Torácica , Animais , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Fenômenos Biomecânicos , Colágeno , Dilatação , Dilatação Patológica/patologia , CamundongosRESUMO
BACKGROUND: A biomechanical approach to the rupture risk of an abdominal aortic aneurysm could be a solution to ensure a personalized estimate of this risk. It is still difficult to know in what conditions, the assumptions made by biomechanics, are valid. The objective of this work was to determine the individual biomechanical rupture threshold and to assess the correlation between their rupture sites and the locations of their maximum stress comparing two computed tomography scan (CT) before and at time of rupture. METHODS: We included 5 patients who had undergone two CT; one within the last 6 months period before rupture and a second CT scan just before the surgical procedure for the rupture. All DICOM data, both pre- and rupture, were processed following the same following steps: generation of a 3D geometry of the abdominal aortic aneurysm, meshing and computational stress analysis using the finite element method. We used two different modelling scenarios to study the distribution of the stresses, a "wall" model without intraluminal thrombus (ILT) and a "thrombus" model with ILT. RESULTS: The average time between the pre-rupture and rupture CT scans was 44 days (22-97). The median of the maximum stresses applied to the wall between the pre-rupture and rupture states were 0.817 MPa (0.555-1.295) and 1.160 MPa (0.633-1.625) for the "wall" model; and 0.365 MPa (0.291-0.753) and 0.390 MPa (0.343-0.819) for the "thrombus" model. There was an agreement between the site of rupture and the location of maximum stress for only 1 patient, who was the only patient without ILT. CONCLUSIONS: We observed a large variability of stress values at rupture sites between patients. The rupture threshold strongly varied between individuals depending on the intraluminal thrombus. The site of rupture did not correlate with the maximum stress except for 1 patient.
Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Ruptura Aórtica/diagnóstico por imagem , Aortografia , Angiografia por Tomografia Computadorizada , Hemodinâmica , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Trombose/diagnóstico por imagem , Idoso , Aneurisma da Aorta Abdominal/complicações , Aneurisma da Aorta Abdominal/fisiopatologia , Ruptura Aórtica/etiologia , Ruptura Aórtica/fisiopatologia , Fenômenos Biomecânicos , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Estresse Mecânico , Trombose/complicações , Trombose/fisiopatologia , Fatores de TempoRESUMO
Aortic smooth muscle cells (SMCs) play a vital role in maintaining mechanical homeostasis in the aorta. We recently found that SMCs of aneurysmal aortas apply larger traction forces than SMCs of healthy aortas. This result was explained by the significant increase of hypertrophic SMCs abundance in aneurysms. In this study, we investigate whether the cytoskeleton stiffness of SMCs may also be altered in aneurysmal aortas. For that, we use atomic force microscopy (AFM) nano-indentation with a specific mode that allows subcellular-resolution mapping of the local stiffness across a specified region of interest of the cell. Aortic SMCs from a commercial human lineage (AoSMCs, Lonza) and primary aneurysmal SMCs (AnevSMCs) are cultured in conditions promoting the development of their contractile apparatus, and seeded on hydrogels with stiffness properties of 12 kPa and 25 kPa. Results show that all SMCs exhibit globally a lognormal stiffness distribution, with medians in the range 10-30 kPa. The mean of stiffness distributions is 16 kPa in aneurysmal SMCs and 12 kPa in healthy cells, but the differences are not statistically significant due to the large dispersion of AFM nano-indentation stiffness. We conclude that the possible alterations previously found in aneurysmal SMCs do not affect significantly the AFM nano-indentation stiffness of their cytoskeleton.
Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Aorta , Células Cultivadas , Citoesqueleto , Humanos , Microscopia de Força Atômica , Miócitos de Músculo Liso/fisiologiaRESUMO
Characterization of material parameters from experimental data remains challenging, especially on biological structures. One of such techniques allowing for the inverse determination of material parameters from measurement data is the virtual fields method (VFM). However, application of the VFM on general structures of complicated shape has not yet been extensively investigated. In this paper, we extend the framework of the VFM method to thin curved solids in three-dimensional, commonly denoted shells. Our method is then used to estimate the Young's modulus and hysteretic damping of the human eardrum. By utilizing Kirchhoff plate theory, we assume that the behavior of the shell varies linearly through the thickness. The total strain of the shell can then be separated in a bending and membrane strain. This in turn allowed for an application of the VFM based only on data of the outer surface of the shell. We validated our method on simulated and experimental data of a human eardrum made to vibrate at certain frequencies. It was shown that the identified material properties were accurately determined based only on data from the outer surface and are in agreement with literature. Additionally, we observed that neither the bending nor the membrane strain in an human eardrum can be neglected and both contribute significantly to the total strain found experimentally.
Assuntos
Membrana Timpânica , Módulo de Elasticidade , HumanosRESUMO
Biomechanical characterization of abdominal aortic aneurysms (AAAs) has become commonplace in rupture risk assessment studies. However, its translation to the clinic has been greatly limited due to the complexity associated with its tools and their implementation. The unattainability of patient-specific tissue properties leads to the use of generalized population-averaged material models in finite element analyses, which adds a degree of uncertainty to the wall mechanics quantification. In addition, computational fluid dynamics modeling of AAA typically lacks the patient-specific inflow and outflow boundary conditions that should be obtained by nonstandard of care clinical imaging. An alternative approach for analyzing AAA flow and sac volume changes is to conduct in vitro experiments in a controlled laboratory environment. In this study, we designed, built, and characterized quantitatively a benchtop flow loop using a deformable AAA silicone phantom representative of a patient-specific geometry. The impedance modules, which are essential components of the flow loop, were fine-tuned to ensure typical intraluminal pressure conditions within the AAA sac. The phantom was imaged with a magnetic resonance imaging (MRI) scanner to acquire time-resolved images of the moving wall and the velocity field inside the sac. Temporal AAA sac volume changes lead to a corresponding variation in compliance throughout the cardiac cycle. The primary outcome of this work was the design optimization of the impedance elements, the quantitative characterization of the resistive and capacitive attributes of a compliant AAA phantom, and the exemplary use of MRI for flow visualization and quantification of the deformed AAA geometry.
Assuntos
Aneurisma da Aorta AbdominalRESUMO
OBJECTIVE: The aim was to validate a computational patient specific model of Zenith® fenestrated device deployment in abdominal aortic aneurysms to predict fenestration positions. METHODS: This was a retrospective analysis of the accuracy of numerical simulation for fenestrated stent graft sizing. Finite element computational simulation was performed in 51 consecutive patients that underwent successful endovascular repair with Zenith® fenestrated stent grafts in two vascular surgery units with a high volume of aortic procedures. Longitudinal and rotational clock positions of fenestrations were measured on the simulated models. These measurements were compared with those obtained by (i) an independent observer on the post-operative computed tomography (CT) scan and (ii) by the stent graft manufacturer planning team on the pre-operative CT scan. (iii) Pre- and post-operative positions were also compared. Longitudinal distance and clock face discrepancies >3 mm and 15°, respectively, were considered significant. Reproducibility was assessed using Bland-Altman and linear regression analysis. RESULTS: A total of 195 target arteries were analysed. Both Bland-Altman and linear regression showed good reproducibility between the three measurement techniques performed. The median absolute difference between the simulation and post-operative CT scan was 1.0 ± 1.1 mm for longitudinal distance measurements and 6.9 ± 6.1° for clock positions. The median absolute difference between the planning centre and post-operative CT scan was 0.8 ± 0.8 mm for longitudinal distance measurements and 5.1 ± 5.0° for clock positions. Finally, the median absolute difference between the simulation and the planning centre was 0.96 ± 0.97 mm for longitudinal distance measurements and 4.8 ± 3.6° for clock positions. CONCLUSION: The numerical model of deployed fenestrated stent grafts is accurate for planning position of fenestrations. It has been validated in 51 patients, for whom fenestration locations were similar to the sizing performed by physicians and the planning centre.
Assuntos
Aneurisma da Aorta Abdominal/cirurgia , Prótese Vascular , Procedimentos Endovasculares/instrumentação , Modelagem Computacional Específica para o Paciente , Stents , Aorta/diagnóstico por imagem , Aortografia/métodos , Procedimentos Endovasculares/métodos , Humanos , Período Pós-Operatório , Período Pré-Operatório , Reprodutibilidade dos Testes , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do TratamentoAssuntos
Aneurisma da Aorta Abdominal , Implante de Prótese Vascular , Endoleak , Procedimentos Endovasculares , Humanos , Aneurisma da Aorta Abdominal/cirurgia , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Endoleak/etiologia , Endoleak/diagnóstico por imagem , Endoleak/cirurgia , Procedimentos Endovasculares/efeitos adversos , Implante de Prótese Vascular/efeitos adversos , Resultado do Tratamento , Masculino , Prótese Vascular , Idoso , Modelagem Computacional Específica para o Paciente , Modelos CardiovascularesRESUMO
Structural intensity on plates or shells can provide insights on how the vibrational energy is transmitted throughout a sample. Its assessment via experimental deflections are widely documented in the case of plates, which just requires the computation of spatial derivatives of out-of-plane displacements or velocities and a knowledge of the sample's material properties. However, if the structural intensity is to be assessed on arbitrary shells, a more elaborate data processing is required. The in-plane displacements become relevant terms and the spatial derivatives along a predefined local coordinate system need to be computed. Here, a method from which experimental data is interpolated on a finite element mesh is proposed. First, the global displacements and shape of a sample's outer-surface are measured. These data are then projected on a quadratic mesh, where the Kirchhoff plate theory is invoked for the individual elements. The data differentiation is computed via quadratic shape functions, from which the strains and structural intensity are estimated. Through the obtained vibrational energy results on the basis of measured displacement and shape data and by validating the method via a numerical simulation, the proposed work has shown to be a reliable tool to assess energy transmission on irregular shells.
RESUMO
Many vascular disorders, including aortic aneurysms and dissections, are characterized by localized changes in wall composition and structure. Notwithstanding the importance of histopathologic changes that occur at the microstructural level, macroscopic manifestations ultimately dictate the mechanical functionality and structural integrity of the aortic wall. Understanding structure-function relationships locally is thus critical for gaining increased insight into conditions that render a vessel susceptible to disease or failure. Given the scarcity of human data, mouse models are increasingly useful in this regard. In this paper, we present a novel inverse characterization of regional, nonlinear, anisotropic properties of the murine aorta. Full-field biaxial data are collected using a panoramic-digital image correlation (p-DIC) system. An inverse method, based on the principle of virtual power (PVP), is used to estimate values of material parameters regionally for a microstructurally motivated constitutive relation. We validate our experimental-computational approach by comparing results to those from standard biaxial testing. The results for the nondiseased suprarenal abdominal aorta from apolipoprotein-E null mice reveal material heterogeneities, with significant differences between dorsal and ventral as well as between proximal and distal locations, which may arise in part due to differential perivascular support and localized branches. Overall results were validated for both a membrane and a thick-wall model that delineated medial and adventitial properties. Whereas full-field characterization can be useful in the study of normal arteries, we submit that it will be particularly useful for studying complex lesions such as aneurysms, which can now be pursued with confidence given the present validation.
Assuntos
Aorta/anatomia & histologia , Aorta/fisiologia , Teste de Materiais/métodos , Modelos Cardiovasculares , Animais , Anisotropia , Simulação por Computador , Módulo de Elasticidade/fisiologia , Camundongos , Camundongos Knockout , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Resistência à Tração/fisiologiaRESUMO
Thoracic aortic aneurysms (TAA) represent a critical health issue for which computational models can significantly contribute to better understand the physiopathology. Among different computational frameworks, the Homogenized Constrained Mixture Theory has shown to be a computationally efficient option, allowing the inclusion of several mechanically significant constituents into a layer-specific mixture. Different patient-specific Growth and Remodeling (G&R) models correctly predicted TAA progression, although simplifications such as the inclusion of a limited number of collagen fibers and imposed boundary conditions might limit extensive analyses. The current study aims to enhance existing models by incorporating several discrete collagen fibers and to remove restrictive boundary conditions of the previous models. The implementation of discretized fiber dispersion presents a more realistic description of the vessel, while the removal of boundary conditions was addressed by including cross-links in the model to provide a supplemental stiffness against through-thickness shearing, a feature that was previously absent, and by the development of a non-local framework that ensures the stable deposition and degradation of collagen fibers. With these improvements, the current model represents a step forward towards more robust and comprehensive simulations of TAA growth.
RESUMO
The purpose of this study was to assess whether growth and remodeling (G&R) theory could explain staphyloma formation from a local scleral weakening-as could occur from age-related elastin degradation, myopia progression, or other factors. A finite element model of a healthy eye was reconstructed, including the lamina cribrosa, the peripapillary sclera, and the peripheral sclera. The homogenized constrained mixture model was employed to simulate the adaptation of the sclera to alterations in its biomechanical environment over a duration of 13.7 years. G&R processes were triggered by reducing the shear stiffness of the ground matrix in the peripapillary sclera and lamina cribrosa by 85%. Three distinct G&R scenarios were investigated: (1) low mass turnover rate in combination with transmural volumetric growth; (2) high mass turnover rate in combination with transmural volumetric growth; and (3) high mass turnover rate in combination with mass density growth. In scenario 1, we observed a significant outpouching of the posterior pole, closely resembling the shape of a Type-III staphyloma. Additionally, we found a notable change in scleral curvature and a thinning of the peripapillary sclera by 84%. In contrast, scenario 2 and 3 exhibited less drastic deformations, with stable posterior staphylomas after approximately 7 years. Our proposed framework suggests that local scleral weakening is sufficient to trigger staphyloma formation under a normal level of intraocular pressure. Our model also reproduced characteristics of Type-III staphylomas. With patient-specific scleral geometries (as could be obtained with wide-field optical coherence tomography), our framework could be clinically translated to help us identify those at risks of developing posterior staphylomas.
RESUMO
BACKGROUND AND OBJECTIVE: Acute Ischaemic Stroke (AIS), a significant global health concern, results from occlusions in cerebral arteries, causing irreversible brain damage. Different type of treatments exist depending on the size and location of the occlusion. Challenges persist in achieving faster diagnosis and treatment, which needs to happen in the first hours after the onset of symptoms to maximize the chances of patient recovery. The current diagnostic pipeline, i.e. "drip and ship", involves diagnostic via advanced imaging tools, only available in large clinical facilities, which poses important delays. This study investigates the feasibility of developing a machine learning model to diagnose and locate occluding blood clots from velocity waveforms, which can be easily be obtained with portable devices such as Doppler Ultrasound. The goal is to explore this approach as a cost-effective and time-efficient alternative to advanced imaging techniques typically available only in large hospitals. METHODS: Simulated haemodynamic data is used to conduct blood flow simulations representing healthy and different AIS scenarios using a population-based database. A Machine Learning classification model is trained to solve the inverse problem, this is, detect and locate a potentially occluding thrombus from measured waveforms. The classification process involves two steps. First, the region where the thrombus is located is classified into nine groups, including healthy, left or right large vessel occlusion, left or right anterior cerebral artery, and left or right posterior cerebral artery. In a second step, the bifurcation generation of the thrombus location is classified as small, medium, or large vessel occlusion. RESULTS: The proposed methodology is evaluated for data without noise, achieving a true prediction rate exceeding 95% for both classification steps mentioned above. The inclusion of up to 20% noise reduces the true prediction rate to 80% for region detection and 70% for bifurcation generation detection. CONCLUSIONS: This study demonstrates the potential effectiveness and efficiency of using haemodynamic data and machine learning to detect and locate occluding thrombi in AIS patients. Although the geometric and topological data used in this study are idealized, the results suggest that this approach could be applicable in real-world situations with appropriate adjustments. Source code is available in https://github.com/ahmetsenemse/Acute-Ischaemic-Stroke-screening-tool-.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Comportamento de Utilização de Ferramentas , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/terapia , HemodinâmicaRESUMO
PURPOSE: Inappropriate stent-graft (SG) flexibility has been frequently associated with endovascular aortic repair (EVAR) complications such as endoleaks, kinks, and SG migration, especially in tortuous arteries. Stents derived from auxetic unit cells have shown some potential to address these issues as they offer an optimum trade-off between radial stiffness and bending flexibility. METHODS: In this study, we utilized an established finite element (FE)-based approach to replicate the mechanical response of a SG iliac limb derived from auxetic unit cells in a virtual tortuous iliac aneurysm using a combination of a 180° U-bend and intraluminal pressurization. This study aimed to compare the mechanical performance (flexibility and durability) of SG limbs derived from auxetic unit cells and two commercial SG limbs (Z-stented SG and circular-stented SG models) in a virtual tortuous iliac aneurysm. Maximal graft strain and maximum stress in stents were employed as criteria to estimate the durability of SGs, whereas the maximal luminal reduction rate and the bending stiffness were used to assess the flexibility of the SGs. RESULTS: SG limbs derived from auxetic unit cells demonstrated low luminal reduction (range 4-12%) with no kink, in contrast to Z-stented SG, which had a kink in its central area alongside a high luminal reduction (44%). CONCLUSIONS: SG limbs derived from auxetic unit cells show great promise for EVAR applications even at high angulations such as 180°, with acceptable levels of durability and flexibility.
Assuntos
Implante de Prótese Vascular , Prótese Vascular , Procedimentos Endovasculares , Análise de Elementos Finitos , Modelos Cardiovasculares , Desenho de Prótese , Stents , Estresse Mecânico , Humanos , Procedimentos Endovasculares/instrumentação , Implante de Prótese Vascular/instrumentação , Aneurisma Ilíaco/cirurgia , Aneurisma Ilíaco/fisiopatologia , Aneurisma Ilíaco/diagnóstico por imagem , Teste de Materiais , Falha de Prótese , Maleabilidade , Simulação por ComputadorRESUMO
PURPOSE: Ultrasound imaging is key in the management of patients with an abdominal aortic aneurysm (AAA). It was recently shown that the cyclic diameter variations between diastole and systole, which can be quantified with US imaging, increase significantly with the strength of the applied probe pressure on the patient's abdomen. The goal of this study is to investigate this effect more thoroughly. METHODS: With finite-element modeling, pulsatile blood pressure and probe pressure are simulated in three patient-specific geometries. Two distinct models for the aortic wall were simulated: a nonlinear hyperelastic and a linear elastic model. In addition, varying stiffness was considered for the surrounding tissues. The effect of light, moderate, and firm probe pressure was quantified on the stresses and strains in the aortic wall, and on two in vivo stiffness measures. In addition, the Elasticity Loss Index was proposed to quantify the change in stiffness due to probe pressure. RESULTS: Firm probe pressure decreased the measured aortic stiffness, and material stiffness was affected only when the wall was modeled as nonlinear, suggesting a shift in the stress-strain curve. In addition, stiffer surrounding tissues and a more elongated aneurysm sac decreased the responsiveness to the probe pressure. CONCLUSION: The effect of probe pressure on the AAA wall stiffness was clarified. In particular, the AAA wall nonlinear behavior was found to be of primary importance in determining the probe pressure response. Thus, further work will intend to make use of this novel finding in a clinical context.
RESUMO
Introduction: Numerical simulations have demonstrated the superior bending flexibility of auxetic stents compared to conventional stent designs for endovascular procedures. However, conventional stent manufacturing techniques struggle to produce complex auxetic stent designs, fueling the adoption of additive manufacturing techniques. Methods: In this study, we employed DMLS additive manufacturing to create Titanium Ti64 alloy stent prototypes based on auxetic stent designs investigated in a previous study. These prototypes were then subjected to experimental three-point bending tests. Result: The experimental results were replicated using a finite element model, which showed remarkable accuracy in predicting the bending flexibility of four auxetic stents and two conventional stents. Discussion: Although this validation study demonstrates the promising potential of DMLS and other additive manufacturing methods for fabricating auxetic stents, further optimization of current stent design limitations and the incorporation of post-processing techniques are essential to enhance the reliability of these additive manufacturing processes.
RESUMO
BACKGROUND AND OBJECTIVE: Computational models of hemodynamics can contribute to optimizing surgical plans, and improve our understanding of cardiovascular diseases. Recently, machine learning methods have become essential to reduce the computational cost of these models. In this study, we propose a method that integrates 1-D blood flow equations with Physics-Informed Graph Neural Networks (PIGNNs) to estimate the propagation of blood flow velocity and lumen area pulse waves along arteries. METHODS: Our methodology involves the creation of a graph based on arterial topology, where each 1-D line represents edges and nodes in the blood flow analysis. The innovation lies in decoding the mathematical data connecting the nodes, where each node has velocity and lumen area pulse waveform outputs. The training protocol for PIGNNs involves measurement data, specifically velocity waves measured from inlet and outlet vessels and diastolic lumen area measurements from each vessel. To optimize the learning process, our approach incorporates fundamental physical principles directly into the loss function. This comprehensive training strategy not only harnesses the power of machine learning but also ensures that PIGNNs respect fundamental laws governing fluid dynamics. RESULTS: The accuracy was validated in silico with different arterial networks, where PIGNNs achieved a coefficient of determination (R2) consistently above 0.99, comparable to numerical methods like the discontinuous Galerkin scheme. Moreover, with in vivo data, the prediction reached R2 values greater than 0.80, demonstrating the method's effectiveness in predicting flow and lumen dynamics using minimal data. CONCLUSIONS: This study showcased the ability to calculate lumen area and blood flow rate in blood vessels within a given topology by seamlessly integrating 1-D blood flow with PIGNNs, using only blood flow velocity measurements. Moreover, this study is the first to compare the PIGNNs method with other classic Physics-Informed Neural Network (PINNs) approaches for blood flow simulation. Our findings highlight the potential to use this cost-effective and proficient tool to estimate real-time arterial pulse waves.
RESUMO
The soft biological tissues have the ability to heal and self-repair after damage or injury. During the healing process, damaged tissues are replaced by newly produced undamaged tissue to restore homeostasis. Computational modeling serves as an effective tool for simulating the healing process and understanding the underlying mechanisms. In previous work, we developed the first unified continuum damage model for the healing of soft biological tissues. However, the initial theory lacked generalizability to more realistic scenarios and applicability to biomechanical problems due to the simplicity of the isotropic constitutive model and two-dimensional simulations. Therefore, we further improve our approach by developing a three-dimensional anisotropic unified healing model to address more realistic challenges. By using the Holzapfel-Gasser-Ogden model as the hyperelastic term, the influence of the collagen fibers is considered and the reorientation of fibers in healing is simulated. Three numerical examples related to hypertension, aneurysm, and restenosis of the atherosclerotic artery after balloon angioplasty are presented to demonstrate the effectiveness of the proposed model. By comparing numerical solutions and reference solutions, we demonstrate the ability of the proposed model in simulating long-term tissue healing process and analyze the impact of anisotropic terms.
RESUMO
Background: Cardiovascular diseases remain a leading cause of morbidity and mortality worldwide and require extensive investigation through in-vitro studies. Mock Circulatory Loops (MCLs) are advanced in-vitro platforms that accurately replicate physiological and pathological hemodynamic conditions, while also allowing for precise and patient-specific data collection. Particle Image Velocimetry (PIV) is the standard flow visualization technique for in-vitro studies, but it is costly and requires strict safety measures. High-power Light Emitting Diode illuminated PIV (LED-PIV) offers a safer and cheaper alternative. Methods: In this study, we aim to demonstrate the feasibility of a Hybrid-MCL integrated with a LED-PIV system for the investigation of Abdominal Aortic Aneurysm (AAA) compliant phantoms. We considered two distinct AAA models, namely, an idealized model and a patient-specific one under different physiological flow and pressure conditions. Results: The efficacy of the proposed setup for the investigation of AAA hemodynamics was confirmed by observing velocity and vorticity fields across multiple flow rate scenarios and regions of interest. Conclusion: The findings of this study underscore the potential impact of Hybrid-MCL integrated with a LED-PIV system on enhancing the affordability, accessibility, and safety of in-vitro CVD investigations.
RESUMO
Experimental protocols are fundamental for quantifying the mechanical behaviour of soft tissue. These data are crucial for advancing the understanding of soft tissue mechanics, developing and calibrating constitutive models, and informing the development of more accurate and predictive computational simulations and artificial intelligence tools. This paper offers a comprehensive review of experimental tests conducted on soft aortic tissues, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, based on the Scopus, Web of Science, IEEE, Google Scholar and PubMed databases. This study includes a detailed overview of the test method protocols, providing insights into practical methodologies, specimen preparation and full-field measurements. The review also briefly discusses the post-processing methods applied to extract material parameters from experimental data. In particular, the results are analysed and discussed providing representative domains of stress-strain curves for both uniaxial and biaxial tests on human aortic tissue.
RESUMO
BACKGROUND: Abdominal aortic aneurysms (AAAs) are an important cause of death. Small AAAs are surveyed with ultrasound (US) until a defined diameter threshold, often triggering a computer tomography scan and surgical repair. Nevertheless, 5%-10% of AAA ruptures are below threshold, and some large AAAs never rupture. AAA wall biomechanics may reveal vessel wall degradation with potential for patient-centred risk assessment. This clinical study investigated AAA vessel wall biomechanics and deformation patterns, including reproducibility. METHODS: In 50 patients with AAA, 183 video clips were recorded by two sonographers. Prototype software extracted AAA vessel wall principal strain characteristics and patterns. Functional principal component analysis (FPCA) derived strain pattern statistics. RESULTS: Strain patterns demonstrated reduced AAA wall strains close to the spine. The strain pattern "topography" (i.e., curve phases or "peaks" and "valleys") had a 3.9 times lower variance than simple numeric assessment of strain amplitudes, which allowed for clustering in two groups with FPCA. A high mean reproducibility of these clusters of 87.6% was found. Median pulse pressure-normalised mean principal strain (PPPS) was 0.038%/mm Hg (interquartile range: 0.029-0.051%/mm Hg) with no correlation to AAA size (Spearman's ρ = 0.02, false discovery rate-p = 0.15). Inter-operator reproducibility of PPPS was poor (limits of agreement: ±0.031%/mm Hg). DISCUSSION: Strain patterns challenge previous numeric stiffness measures based on anterior-posterior-diameter and are reproducible for clustering. This study's PPPS aligned with prior findings, although clinical reproducibility was poor. In contrast, US-based strain patterns hold promising potential to enhance AAA risk assessment beyond traditional diameter-based metrics.