Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(33): 18286-18295, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37551934

RESUMO

Quasi-1D nanoribbons provide a unique route to diversifying the properties of their parent 2D nanomaterial, introducing lateral quantum confinement and an abundance of edge sites. Here, a new family of nanomaterials is opened with the creation of arsenic-phosphorus alloy nanoribbons (AsPNRs). By ionically etching the layered crystal black arsenic-phosphorus using lithium electride followed by dissolution in amidic solvents, solutions of AsPNRs are formed. The ribbons are typically few-layered, several micrometers long with widths tens of nanometers across, and both highly flexible and crystalline. The AsPNRs are highly electrically conducting above 130 K due to their small band gap (ca. 0.035 eV), paramagnetic in nature, and have high hole mobilities, as measured with the first generation of AsP devices, directly highlighting their properties and utility in electronic devices such as near-infrared detectors, quantum computing, and charge carrier layers in solar cells.

2.
Nanoscale ; 16(4): 1742-1750, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197428

RESUMO

Phosphorene nanoribbons (PNRs) can be synthesised in intrinsically scalable methods from intercalation of black phosphorus (BP), however, the mechanism of ribbonisation remains unclear. Herein, to investigate the point at which nanoribbons form, we decouple the two key synthesis steps: first, the formation of the BP intercalation compound, and second, the dissolution into a polar aprotic solvent. We find that both the lithium intercalant and the negative charge on the phosphorus host framework can be effectively removed by addition of phenyl cyanide to return BP and investigate whether fracturing to ribbons occurred after the first step. Further efforts to exfoliate mechanically with or without solvent reveal that the intercalation step does not form ribbons, indicating that an interaction between the amidic solvent and the intercalated phosphorus compound plays an important role in the formation of nanoribbons.

3.
Adv Mater ; : e2400270, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036829

RESUMO

Tuning magnetic properties in layered van der Waals (vdW) materials has captured significant attention due to the efficient control of ground states by heterostructuring and external stimuli. Electron doping by electrostatic gating, interfacial charge transfer, and intercalation is particularly effective in manipulating the exchange and spin-orbit properties, resulting in a control of Curie temperature (TC) and magnetic anisotropy. Here, an uncharted role of intercalation is discovered to generate magnetic frustration. As a model study, Na atoms are intercalated into the vdW gaps of pristine Cr2Ge2Te6 (CGT) where generated magnetic frustration leads to emerging spin-glass states coexisting with a ferromagnetic order. A series of dynamic magnetic susceptibility measurements/analysis confirms the formation of magnetic clusters representing slow dynamics with a distribution of relaxation times. The intercalation also modifies other macroscopic physical parameters including the significant enhancement of TC from 66 to 240 K and the switching of magnetic easy-hard axis direction. This study identifies intercalation as a unique route to generate emerging frustrated spin states in simple vdW crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA