Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 26(7): 1385-1397, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32647456

RESUMO

Role of rhizobacteria and zinc (Zn) was investigated in the management of charcoal rot disease in mungbean [Vigna radiata (L.) Wilczek] caused by Macrophomina phaseolina (Tassi) Goid. In vitro, screening tests with eight rhizobacteria [Bacillus subtilis (FCBP-0324), B. subtilis (FCBP-0189), Rhizobacter daucus (FCBP-0450), Azospirillum brasilense (FCBP-0025), Azospirillum lipoferum (FCBP-0022), Pseudomonas malophilia (FCBP-0099), Pseudomonas florescense (FCBP-0083) and Ochrobactrum ciceri (FCBP-0727)] were conducted against M. phaseolina and FCBP-0727 were found as the most effective biocontrol agent. Molecular analyses of 16S rDNA combined with cultural and biochemical analyses confirmed FCBP-0727 identification (GeneBank Accession No. LC415039). Cell-free culture filtrate (CFCF) and cell culture of O. ciceri were separated and antifungal trials of both substrates indicated inhibition in mycelial growth and suppression in sclerotia formation, although the CFCF appeared to be more destructive against the pathogen. Ethyl-acetate and chloroform extracts of bacterial secondary metabolites completely halted the growth of M. phaseolina. The GC-MS analysis of CFCF of chloroform extract proved to be rich sources of bioactive fungicide like phthalates, adipic acid, propanoic acid, and linoleic acid. Likewise, CFCF of ethyl acetate also exhibited important organic compounds like phthalates, diisopropylglycol and octasiloxan. Pot experiment revealed that soil inoculation with O. ciceri in combination with Zn (2.5 mg/kg) protected mungbean plants against M. phaseolina through improving photosynthetic pigment, total protein content and activities of antioxidant enzymes (catalase, peroxidase and polyphenol oxidase). The present study will open new vistas for biological management of charcoal rot disease of mungbean using a combination of rhizobacteria and Zn.

2.
J Hazard Mater ; 473: 134452, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762984

RESUMO

Agricultural lands with vanadium (V), pose a significant and widespread threat to crop production worldwide. The study was designed to explore the melatonin (ME) treatment in reducing the V-induced phytotoxicity in muskmelon. The muskmelon seedlings were grown hydroponically and subjected to V (40 mg L-1) stress and exogenously treated with ME (100 µmol L-1) to mitigate the V-induced toxicity. The results showed that V toxicity displayed a remarkably adverse effect on seedling growth and biomass, primarily by impeding root development, the photosynthesis system and the activities of antioxidants. Contrarily, the application of ME mitigated the V-induced growth damage and significantly improved root attributes, photosynthetic efficiency, leaf gas exchange parameters and mineral homeostasis by reducing V accumulation in leaves and roots. Additionally, a significant reduction in the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA) along with a decrease in electrolyte leakage was observed in muskmelon seedlings treated with ME under V-stress. This reduction was attributed to the enhancement in the activities of antioxidants in leaves/roots such as ascorbate (AsA), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), glutathione S-transferase (GST) as compared to the V stressed plants. Moreover, ME also upregulated the chlorophyll biosynthesis and antioxidants genes expression in muskmelon. Given these findings, ME treatment exhibited a significant improvement in growth attributes, photosynthesis efficiency and the activities of antioxidants (enzymatic and non-enzymatic) by regulating their expression of genes against V-stress with considerable reduction in oxidative damage.


Assuntos
Antioxidantes , Melatonina , Fotossíntese , Plântula , Vanádio , Melatonina/farmacologia , Vanádio/toxicidade , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Lactoilglutationa Liase/metabolismo , Lactoilglutationa Liase/genética , Espécies Reativas de Oxigênio/metabolismo , Malondialdeído/metabolismo , Cucumis melo/efeitos dos fármacos , Cucumis melo/genética , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Clorofila/metabolismo
3.
Front Microbiol ; 13: 807699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401436

RESUMO

Early blight (EB) is one of the major fungal diseases caused by Alternaria solani that is responsible for destructive tomato production around the globe. Biocontrol agent/s can be adequately implemented in an integrated management framework by using it in combination with vital plant nutrients, e.g., nitrogen, phosphorus, and potassium (NPK) and zinc (Zn). The current study was aimed to assess the integrated effect of a biocontrol agent Bacillus subtilis (BS-01) and the selective plant nutrients (NPK and Zn) on EB disease management and tomato crop performance. A field experiment was conducted for the off-season tomato production (under walk-in tunnels) in Punjab, Pakistan. The trial was set in a randomized complete block design (RCBD) and comprised nine treatments of a biocontrol agent (BS-01) either alone or in combination with the plant nutrients, viz., NPK (64:46:50 kg acre-1) and Zn (10 kg acre-1) as sustainable disease managing approach against EB. In addition, the biocontrol efficacy of B. subtilis (BS-01) on a fungal load of A. solani was estimated by quantitative PCR assays, where the foliar application of BS-01 on tomato plants either alone or in combination with the plant nutrients was done as a preventive measure. Our results revealed that the interactive effect of BS-01 with plant nutrients conferred significantly a varying degree of resilience in the infected tomato plants against EB by effectively modifying the content of total chlorophyll, carotenoids, and total phenolics along with the activities of antioxidant enzymes (SOD, CAT, POX, PPO, and PAL). In addition, the integrative effect of BS-01 and plant nutrients proved significantly effective in reducing pathogen load on inoculated tomato foliage, displaying the desired level of protection against A. solani infection. Besides, the complementary interaction of BS-01 + Zn + NPK worked synergistically to improve crop productivity by providing the highest marketable yield (21.61 tons acre-1) and net profit (361,363 Pakistani rupees acre-1). This integrated approach is put forward as a way to reduce the fungicide doses to control EB that would act as a sustainable plant protection strategy to generate profitable tomato production.

4.
Front Microbiol ; 13: 899224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958154

RESUMO

Charcoal rot disease is incited by the soil-borne fungus Macrophomina phaseolina (Tassi). Goid is a challenging disease due to long-term persistence of fungus sclerotia in the soil. This study assessed the potential of zinc (Zn: 1.25, 2.44, and 5 mg/kg) and green manure (GM: 1 and 2%) in solitary and bilateral combinations to alleviate infection stress incited by M. phaseolina on disease, growth, physiology, and yield attributes in mungbean. A completely randomized design experiment was conducted in potted soil, artificially inoculated with the pathogen, and sown with surface-sterilized seeds of mungbean genotypes (susceptible: MNUYT-107 and highly susceptible: MNUYT-105). Concealment of plant resistance by M. phaseolina in both genotypes resulted in 53-55% disease incidence and 40-50% plant mortality, which contributed in causing a significant reduction of 30-90% in attributes of growth, biomass, yield, photosynthetic pigment, and total protein content with an imbalance of production of antioxidant enzymes (polyphenol oxidase, superoxide dismutase, catalase, and peroxidase). Soil application with Zn-based fertilizer (ZnSO4: 33%) in combination with GM significantly managed up to 80% of the charcoal rot disease, hence improving growth (50-100%) and physiochemical (30-100%) attributes and sustainably enhancing grain average yield (300-600%), biological yield (100-200%), and harvest index (100-200%) in mungbean plants. The heat map and principal component analyses based on 19 measured attributes with 16 treatments separated Zn (2.44 or 5 mg/kg) combined with 2% GM as the best treatments for alleviating charcoal rot disease stress by improving growth, yield, and biological attributes to an extent to profitable farming in terms of harvest index (HI) and benefit-cost ratio (BCR).

5.
Front Plant Sci ; 13: 1089562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777534

RESUMO

Bacterial biocontrol agent/s (BCAs) against plant diseases are eco-friendly and sustainable options for profitable agricultural crop production. Specific beneficial strains of Bacillus subtilis are effective in controlling many fungal diseases including Alternaria blight caused by a notorious pathogen "Alternaria solani". In the present study, the biocontrol attributes of a newfangled strain of B. subtilis (BS-01) have been investigated and its bioactive compounds were also identified against A. solani. The volatile organic compounds (VOCs) produced by BS-01 in organic solvents viz., n-hexane, dichloromethane, and ethyl acetate were extracted and their antifungal efficacy has evaluated against A. solani. Also, the preventive and curative biocontrol method to reduce the fungal load of A. solani was estimated by both foliar and seed applications on infected tomato (Solanum lycopersicum) plants as determined by quantitative PCR assays. Growth chamber bioassay revealed that both foliar and seed application of BS-01 on tomato plants previously or subsequently infected by A. solani significantly reduced the pathogen load on inoculated tomato foliage. Results showed that antifungal bioassays with various concentrations (10-100 mg mL-1) of extracted metabolites produced by BS-01 in ethyl acetate fraction showed the highest inhibition in fungal biomass (extracellular metabolites: 69-98% and intracellular metabolites: 48-85%) followed by n-hexane (extracellular metabolites: 63-88% and intracellular metabolites: 35-62%) and dichloromethane (extracellular metabolites: 41-74% and intracellular metabolites: 42-70%), respectively. The extracted volatile compounds of BS-01 were identified via GC-MS analysis and were found in great proportions in the organic fractions as major potent antifungal constituents including triphenylphosphine oxide; pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl); pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl); n-hexadecanoic acid; n-tridecan-1-ol; octadecane; octadecanoic acid; eicosane and dodecyl acrylate. Separate or mixture of these bioactive VOCs had the potential to mitigate the tomato early blight disease severity in the field that would act as a sustainable plant protection strategy to generate profitable tomato production.

6.
Plant Pathol J ; 35(4): 330-340, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31481856

RESUMO

The present study was undertaken to evaluate the integrated effect of zinc (Zn) with other nutrients in managing early blight (EB) disease in tomato. A pot experiment was carried out with basal application of the recommended level of macronutrients [nitrogen, phosphorus and potassium (NPK)] and micronutrients [magnesium (Mg) and boron (B)] in bilateral combination with Zn (2.5 and 5.0 mg/kg) in a completely randomized deigned in replicates. Results revealed that interactive effect of Zn with Mg or B was often futile and in some cases synergistic. Zn with NPK yield synergistic outcome, therefore EB disease was managed significantly (disease incidence: 25% and percent severity index: 13%), which resulted in an efficient signaling network that reciprocally controls nutrient acquisition and uses with improved growth and development in a tomato plant. Thus, crosstalk and convergence of mechanisms in metabolic pathways resulted in induction of resistance in tomato plant against a pathogen which significantly improved photosynthetic pigment, total phenolics, total protein content and defense-related enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL)]. The tremendous increase in total phenolics and PAL activity suggesting their additive effect on salicylic acid which may help the plant to systemically induce resistance against pathogen attack. It was concluded that interactive effect of Zn (5.0 mg/kg) with NPK significantly managed EB disease and showed positive effect on growth, physiological and biochemical attributes therefor use of Zn + NPK is simple and credible efforts to combat Alternaria stress in tomato plants.

7.
Folia Microbiol (Praha) ; 62(3): 207-219, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28025801

RESUMO

Sclerotium rolfsii is one of the most destructive fungal plant pathogens that can infect over 500 plants and can adapt to diverse environmental conditions. The present research work was carried out to evaluate the impact of both hexa- and trivalent chromium (Cr) on growth, morphology, enzymatic characteristics, and metal accumulation in S. rolfsii under laboratory conditions. Experiments were performed in both malt extract broth and agar growth medium amended with six different concentrations (10, 20, 40, 60, 80, and 100 ppm) of each Cr(III) and Cr(VI) ions inoculated with fungus and incubated for 6-7 days at 25 ± 3 °C. In broth medium, the total protein content was declined and activities of antioxidant enzymes were increased with an increase in metal concentrations. Lower concentrations (10 ppm) of the metal ions stimulated the growth of fungus and higher concentrations (60-100) inhibited it. The Fourier transform infrared spectroscopy (FTIR) assessment showed hydroxyl, carboxyl, and amine groups as major metal binding sites. In agar medium, tolerance index was decreased up to 0.56 at 10-80 ppm of Cr(III) and up to 0.62 at 10-60 ppm of Cr(VI). Considerable modifications were observed in hyphal and sclerotial morphology with an increase in concentration of metal ions. The current study concluded that interference of Cr with growth and physiological process of S. rolfsii could affect its infection level on its host plant. This study provides important information regarding cultivation of susceptible plant varieties in Cr-polluted soil as evidenced by pathogen growth up to 50 ppm of Cr(III) and Cr(VI) ions.


Assuntos
Basidiomycota/efeitos dos fármacos , Basidiomycota/fisiologia , Cromo/metabolismo , Inibidores do Crescimento/metabolismo , Substâncias de Crescimento/metabolismo , Estresse Oxidativo , Antioxidantes/análise , Basidiomycota/citologia , Basidiomycota/enzimologia , Meios de Cultura/química , Hifas/citologia , Hifas/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA