Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 9(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218209

RESUMO

Bacterial resistance has become a worrying problem for human health, especially since certain bacterial strains of Escherichia coli (E. coli) can cause very serious infections. Thus, the search for novel natural inhibitors with new bacterial targets would be crucial to overcome resistance to antibiotics. Here, we evaluate the inhibitory effects of Apis mellifera bee venom (BV-Am) and of its two main components -melittin and phospholipase A2 (PLA2)- on E. coli F1F0-ATPase enzyme, a crucial molecular target for the survival of these bacteria. Thus, we optimized a spectrophotometric method to evaluate the enzymatic activity by quantifying the released phosphate from ATP hydrolysis catalyzed by E. coli F1F0-ATPase. The protocol developed for inhibition assays of this enzyme was validated by two reference inhibitors, thymoquinone (IC50 = 57.5 µM) and quercetin (IC50 = 30 µM). Results showed that BV-Am has a dose-dependent inhibitory effect on E. coli F1F0-ATPase with 50% inhibition at 18.43 ± 0.92 µg/mL. Melittin inhibits this enzyme with IC50 = 9.03 ± 0.27 µM, emphasizing a more inhibitory effect than the two previous reference inhibitors adopted. Likewise, PLA2 inhibits E. coli F1F0-ATPase with a dose-dependent effect (50% inhibition at 2.11 ± 0.11 µg/mL) and its combination with melittin enhanced the inhibition extent of this enzyme. Crude venom and mainly melittin and PLA2, inhibit E. coli F1F0-ATPase and could be considered as important candidates for combating resistant bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA