Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(40): 14871-14880, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37756220

RESUMO

Opportunistic pathogens (OPs) are of concern in drinking water distribution systems because they persist despite disinfectant residuals. While many OPs garner protection from disinfectants via a biofilm lifestyle, Legionella pneumophila (Lp) also gains disinfection resistance by being harbored within free-living amoebae (FLA). It has been long established, but poorly understood, that Lp grown within FLA show increased infectivity toward subsequent FLA or human cells (i.e., macrophage), via a process we previously coined "protozoan-priming". The objectives of this study are (i) to identify in Lp a key genetic determinant of how protozoan-priming increases its infectivity, (ii) to determine the chemical stimulus within FLA to which Lp responds during protozoan-priming, and (iii) to determine if more infectious forms of Lp also exhibit enhanced disinfectant resistance. Using Acanthamoeba castellanii as a FLA host, the priming effect was isolated to Lp's sidGV locus, which is activated upon sensing elevated magnesium concentrations. Supplementing growth medium with 8 mM magnesium is sufficient to produce Lp grown in vitro with an infectivity equivalent to that of Lp grown via the protozoan-primed route. Both Lp forms with increased infectivity (FLA-grown and Mg2+-supplemented) exhibit greater monochloramine resistance than Lp grown in standard media, indicating that passage through FLA not only increases Lp's infectivity but also enhances its monochloramine resistance. Therefore, laboratory-based testing of disinfection strategies should employ conditions that simulate or replicate intracellular growth to accurately assess disinfectant resistance.


Assuntos
Amoeba , Desinfetantes , Legionella pneumophila , Humanos , Legionella pneumophila/genética , Magnésio/farmacologia , Microbiologia da Água , Desinfetantes/farmacologia
2.
Sci Total Environ ; 622-623: 626-634, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223086

RESUMO

Compromised water quality risks public health, which becomes particularly acute in economically marginalized communities. Although the majority of the clean-water-deprived population resides in Sub-Saharan Africa and Asia, a significant portion (32 million) lives in Meso- and Latin-America. Oaxaca is one of the marginalized southern states of Mexico, which has experienced high morbidity from infectious diseases and also has suffered from a high rate of infant mortality. However, there has been a paucity of reports on the status of water quality of culturally diverse rural Oaxaca. This study follows community-based participatory research methods to address the data gap by reporting on water quality (chemical and microbiological) and by exploring social realities and water use practices within and among communities. Surveys and water quality analyses were conducted on 73 households in three rural communities, which were selected based on the choice of water sources (i.e., river water, groundwater, and spring water). Statistically significant variations among communities were observed including the sanitation infrastructure (p-value 0.001), public perception on water quality (p-value 0.007), and actual microbiological quality of water (p-value 0.001). Results indicate a high prevalence of diarrheal diseases, a desire to improve water quality and reduce the cost of water, and a need for education on water quality and health in all the surveyed communities. The complexities among the three studied communities highlight the need for undertaking appropriate policies and water treatment solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA