Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(19): 5183-5202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33563022

RESUMO

Frying is one of the most common units in food processing and catering worldwide, which involves simultaneous physicochemical and structural changes. However, the problems of traditional frying technology, such as low thermal utilization and poor processing efficiency, have been gradually exposed to industrial production. In this paper, strategies of applying physical fields, such as pressure field, electromagnetic field, and acoustic field in frying technology separately or synergistically with improved efficiency and quality attributes are reviewed. The role of physical fields in the frying process was discussed with modifications in heat and mass transfer and porous structures. The effects of physical fields and their processing parameters on moisture loss kinetics, oil uptake, texture, color, and nutrients retention of fried food are introduced, respectively. Recent advances in multi-physical field-based frying techniques were recommended with synergistic benefits. Furthermore, the trends and challenges that could further develop the multi-physical field-based frying techniques are proposed, showing further commercial prospects for the purpose. The application of physical fields has brought new inspiration to the exploitation of efficient and high-qualified frying technologies, while higher technical levels and economic costs need to be taken into consideration.HighlightsThe role of physical fields in pretreatments and frying process were reviewed.The mechanism of physics fields on frying efficiency and quality was summarized.The physicochemical and microstructure changes by physics fields were discussed.The synergy of physical fields in frying technology were outlined.The trends for further multi-physical field-based frying techniques were proposed.


Assuntos
Culinária , Manipulação de Alimentos , Culinária/métodos , Alimentos , Manipulação de Alimentos/métodos , Temperatura Alta , Cinética
2.
Ultrason Sonochem ; 81: 105855, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34871910

RESUMO

Ultrasound as an eco-friendly green technology has been widely studied in food processing. Nevertheless, there is a lack of publications regarding the application of ultrasound in food processing using large-scale reactors. In this paper, the mechanisms and the devices of multi-frequency power ultrasound (MFPU) are described. Moreover, the MFPU applied in enzymolysis of protein, and washing of fruits and vegetables are reviewed. The application of MFPU can improve the enzymolysis of protein through modification on enzyme, modification on substrate materials, and facilitation of the enzymatic hydrolysis process. The ultrasound treatment can enhance the removal of microorganisms, and pesticides on the surface of fruits and vegetables. Furthermore, the reactors of ultrasound-assisted enzymolysis of protein, and washing of fruits and vegetables on the industrial scale are also detailed. This review paper also considers future trends, limitations, drawbacks, and developments of ultrasound application in enzymolysis and washing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA