RESUMO
Noble metals such as gold (Au), zinc (Zn), and iron (Fe) are highly significant in both fundamental and technological contexts owing to their applications in optoelectronics, optical coatings, transparent coatings, photodetectors, light-emitting devices, photovoltaics, nanotechnology, batteries, and thermal barrier coatings. This study presents a comprehensive investigation of the optoelectronic properties of Fe(111) and Au, Zn/Fe(111) materials using density functional theory (DFT) first-principles method with a focus on both materials' spin orientations. The optoelectronic properties were obtained employing the generalized gradient approximation (GGA) and the full-potential linearized augmented plane wave (FP-LAPW) approach, integrating the exchange-correlation function with the Hubbard potential U for improved accuracy. The arrangement of Fe(111) and Au, Zn/Fe(111) materials was found to lack an energy gap, indicating a metallic behavior in both the spin-up state and the spin-down state. The optical properties of Fe(111) and Au, Zn/Fe(111) materials, including their absorption coefficient, reflectivity, energy-loss function, refractive index, extinction coefficient, and optical conductivity, were thoroughly examined for both spin channels in the spectral region from 0.0 eV to 14 eV. The calculations revealed significant spin-dependent effects in the optical properties of the materials. Furthermore, this study explored the properties of the electronic bonding between several species in Fe(111) and Au, Zn/Fe(111) materials by examining the density distribution mapping of charge within the crystal symmetries.
RESUMO
In this study, we delve into the electronic structure, spectroscopic, and optical properties of five benzo derivatives of pyridine, namely, 5-(4-chlorophenyl)-2-fluoropyridine (1), 2-fluoro-5-(4-fluorophenyl)pyridine (2), 4-(2-fluoropyridin-5-yl)phenol (3), 5-(2,3-dichlorophenyl)-2-fluoropyridine (4), and 5-(5-bromo-2-methoxyphenyl)-2-fluoropyridine (5). Utilizing quantum chemical density functional theory calculations at the B3LYP and Perdew-Burke-Ernzerhof levels of theory combined with the 6-311G(d,p) and 6-311++G(d,p) basis sets, we investigated the electronic and optical characteristics of these compounds. Band structure calculations were conducted for their crystalline structures, revealing a direct band gap varying from 3.018 to 3.558 eV, with the valence band maximum and conduction band minimum located at the G point in the Brillouin zone. The optical properties were analyzed, including the dielectric functions, reflectivity, and refractive index. Notably, reflectivity was found to be minimal in the photon energy range of 0.0-3.0 eV, and the static refractive index, n(0), ranged from 1.55 to 1.70. The research also involved assessing the reactivity of the compounds through calculation of the frontier orbital energy gaps (ΔE), indicating a significant charge transfer and high reactivity. Additionally, we performed frequency analysis to unveil the Fourier-transform infrared spectra of compounds 1-5 at room temperature. Molecular electrostatic potential surfaces of the optimized structures were employed to map the electrophilic and nucleophilic regions of the compounds. This investigation provides a comprehensive understanding of the electronic and optical properties of these pyridine derivatives, shedding light on their potential applications in optoelectronics.
RESUMO
Rare-earth zirconate pyrochlores (RE2Zr2O7) are of much fundamental and technological interest as optoelectronic, scintillator and thermal barrier coating materials. For the first time, we report the detailed optoelectronic properties of rare-earth zirconates Nd2Zr2O7 in both, i.e., for spin up and spin down states, via the use of first-principles density functional theory (DFT) procedure. To obtain the desired optoelectronic properties, we used a highly accurate method called full-potential linearized augmented plane wave (FPLAPW) within the generalized gradient approximation (GGA), parametrized with Hubbard potential U as an exchange-correlation function. The band gaps predicted for Nd2Zr2O7 were of the order 2.4 eV and 2.5 eV in Fd-3m and Pmma symmetrical phases, respectively. For both the phases, our research involved a complete examination of the optical properties of Nd2Zr2O7, including extinction coefficient, absorption coefficient, energy loss, function, reflectivity, refractive index, and real optical conductivity, analyzed in the spectral range from 0.0 eV to 14 eV. The calculated optical properties in both phases showed a considerable spin-dependent effect. The electronic bonding characteristics of different species in Nd2Zr2O7 within the two crystal symmetries were explored via the density distribution mapping of charge.
RESUMO
A series of ferrocenyl pentavalent antimonials (1-8) were synthesized and characterized by elemental analysis, FT-IR, and multinuclear ((1) H and (13) C) NMR spectroscopy. These antimonials were evaluated for their antileishmanial potential against Leishmania tropica KWH23, and by biocompatibility and membrane permeability assays. Moreover, mechanistic studies were carried out, mediated by DNA targeting followed by computational docking of ferrocenyl antimonials against the leishmanial trypanothione reductase enzyme. It was observed that the antimonials 1-8 were 390-fold more efficacious (IC50 ) as compared with the standard antimonial drug used. Cytotoxicity results showed that these antimonials are highly active even at low concentrations and are biocompatible with human macrophages. Antimonials 1-8 exhibited extensive intercalation with DNA and, furthermore, docking interactions highlighted the potential interactive binding of the anitimonials within the trypanothione reductase active site, with van der Waals interactions contributing significantly to the process. Hence, it is suggested that the reported antimonials demonstrate high efficacy, less toxicity, and target multiple sites of the Leishmania parasite.
Assuntos
Antimônio/química , Antiprotozoários/química , DNA de Protozoário/química , Compostos Ferrosos/química , Leishmania tropica/efeitos dos fármacos , Compostos Organometálicos/química , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Permeabilidade da Membrana Celular , Compostos Ferrosos/síntese química , Compostos Ferrosos/farmacologia , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Metalocenos , Simulação de Acoplamento Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologiaRESUMO
Two-dimensional (2D) van der Waals (vdW) heterostructured transition metal dichalcogenides (TMDs) open up new possibilities for a wide range of optoelectronic applications. Interlayer couplings are responsible for several fascinating physics phenomena, which are in addition to the multifunctionalities that have been discovered in the field of optoelectronics. These couplings can influence the overall charge, or the energy transfer processes via stacking, separation, and dielectric angles. This focused review article summarizes the most recent and promising strategies for interlayer exciton emission in 2D or integrated perovskites and TMD heterostructures. These types of devices require a thorough comprehension and effective control of interlayer couplings in order to realize their functionalities and improve performance, which is demonstrated in this article with the energy or charge transfer mechanisms in the individual devices. An ideal platform for examining the interlayer coupling and the related physical processes is provided by a summary of the recent research findings in 2D perovskites and TMDs. Furthermore, it would encourage more investigation into the comprehension and regulation of excitonic effects and the related optoelectronic applications in vdW heterostructures over a broad spectral response range. Finally, the current challenges and prospects are summarized in this paper.
RESUMO
Using first-principles calculations, the effects of Yb2+substitutional doping on structural, electronic, and optical properties of a series of perovskite compounds CsCaX3(X: Cl, Br, I), have been investigated. We employed generalized gradient approximation (GGA) and HSE hybrid functional to study the electronic and optical properties. A series of pristine CsCaX3(X: Cl, Br, I) is characterized as a non-magnetic insulator with indirect bandgap perovskite materials. These phosphor materials are suitable candidates for doping with lanthanide series elements to tune their electronic bandgaps according to our requirements because of their wide bandgaps. The calculated electronic bandgaps of CsCaX3(X: Cl, Br, I) are 3.7 eV (GGA) and 4.5 eV (HSE) for CsCaI3, 4.5 eV (GGA) and 5.3 eV (HSE) for CsCaBr3, and 5.4 eV (GGA) and 6.4 eV (HSE) for CsCaCl3. According to formation energies, the Yb2+doped at the Ca-site is thermodynamically more stable as compared to all possible atomic sites. The electronic band structures show that the Yb2+doping induces defective states within the bandgaps of pristine CsCaX3(X: Cl, Br, I). As a result, the Yb2+doped CsCaX3(X: Cl, Br, I) become the direct bandgap semiconductors. The defective states above the valence band maximum are produced due to thef-orbital of the Yb atom. The impurity states near the conduction band minimum are induced due to the major contribution ofd-orbital of the Yb atom and the minor contribution ofs-orbital of the Cs atom. The real and imaginary parts of the dielectric function, optical reflectivity, electron energy loss spectrum, extinction coefficient, and refractive index of pristine and Yb2+doped CsCaX3(X: Cl, Br, I) were studied. The optical dispersion results of dielectric susceptibility closely match their relevant electronic structure and align with previously reported theoretical and experimental data. We conclude that the Yb2+doped CsCaX3(X: Cl, Br, I) are appealing candidates for optoelectronic devices.
RESUMO
We explore influence of Mg alloying effect on electronic band structure dispersion and thermoelectric properties of tin chalcogenide materials. Based on density functional theory (DFT) within a framework of full potential linearized augmented plane wave method (FP-LAPW), we evaluate the energy band structure and optical properties of MgxSn1-xSe (xâ¯=â¯6%, 12% and 18%) materials. Moreover, we extend our calculations to simulate the electrical transport properties using Boltzmann transport theory. Within the approximations employed in our calculations the theoretically predicted band energy gap values and the temperature dependence of electrical transport properties of MgxSn1-xSe compounds revealed that the Mg-alloying have enhanced thermoelectric features. To verify the quality of calculations the comparison with the experimental absorption spectra are presented. The better thermoelectric performance in MgxSn1-xSe is expected to occur for all doping concentrations, however 18% Mg-doped material exhibits higher value of Seebeck coefficient and lower thermal conductivity which is suggestive that at higher Mg concentration the holes become dominant over electrons and hence make these materials to be more promising candidates for their use in thermoelectric power generation and in cooling devices.
Assuntos
Ligas , Elétrons , Condutividade Elétrica , Temperatura , Condutividade TérmicaRESUMO
Transparent conducting oxides (TCOs) of semiconductor family gained significant attention due to increasing trends in the optoelectronic and thermo-physical applications. In current work, we reported electronic, optical, transport and thermodynamical properties of spinel oxides ZnGaO2, [ZnGaO2]:Mn3+ and [ZnGaO2]:Rh3+ compounds. Based on DFT, we employed first-principles calculations implemented in Wien 2k using the modified-Becke-Johnson (mBJ) on parent spinel and generalized-gradient-approximation plus Hubbard potential U (GGA + U) on doped materials, respectively. The calculated band structure shows insulating nature of parent compound, while doped material observed semiconducting nature contains direct band gap for both spin channels with band gaps of [ZnGaO2]:Mn3+ (0.59 up, 2.4â¯eV dn) and [ZnGaO2]:Rh3+ (2.1â¯eV up/dn) respectively. The electronic and optical results reveal that hybridization occurred mainly due to O-p/Zn, Mn-d, Rh-d and Ga-s orbitals. It is analyzed that Mn-doped material shows good absorption in the visible region while other are good in UV region. The effective masses of spinel oxides are also computed at high symmetry directions hence varied nonlinearly with the doping. The stability of materials is checked by calculating formation energies which indicate Mn-doped spinel oxide is most stable as that of others. The thermoelectric properties of spinel oxides were carried out by Post-DFT (Boltztrap) calculations. Large values of Seebeck coefficient and power factor of Mn-doped spinel oxide indicate that this material can be used for thermoelectric devices. The thermodynamical properties are calculated by quasi-harmonic Debye model implemented in GIBBS 2 code. Moreover, the pressure and temperature dependence of all (TD) parameters of investigated spinel oxides are analyzed using quasi-harmonic Debye model.
Assuntos
Óxido de Magnésio , Óxidos , Óxido de Alumínio , SemicondutoresRESUMO
Density functional theoretical (DFT) calculations were carried out to explore the electronic and optical properties of double ordered Ba2NaReO6, Ba2LiReO6, and Sr2LiReO6 perovskites by employing the state-of-the-art exchange-correlation potential, i.e., Tran-Blaha modified Becke-Johnson for the electronic system. The calculated electronic band structures show an indirect band gap along with a semiconductor nature. Total and partial densities of state peaks were analyzed in light of effective contributions of various electronic states. The significant optical parameters, including the components of dielectric constant, the energy loss function, the absorption coefficient, the reflectivity spectra, the refractive index, and the extinction coefficient, were computed and discussed in details for radiation up to 14 eV. Finally, we studied the inter-band contributions from the optical characteristics. Our present study might be considered as first theoretical quantitative calculations of the optical and electronic behavior in the cubic phase of double perovskite materials based on rhenium.
RESUMO
We performed ab initio calculations to study the structural and optoelectronic properties of simple and slab phase TaNO using density functional theory (DFT), in which the full potential augmented plane wave (FP-LAPW) method was implemented using the computational code Wien 2k. The modified Becke-Johnson potential (mBJ-GGA) was used for these calculations. The calculated band structure and electronic properties revealed an indirect bandgap for simple TaNO (3.2â¯eV) and a direct bandgap for slab TaNO (1.5â¯eV). The interband electronic transitions were investigated from the band structure, and transition peaks were observed from the imaginary part of the dielectric function. These transitions are due to Ta-p, N-p and O-p orbitals for simple TaNO and Ta-p, N-s as well as O-p orbitals for slab TaNO. The plasmon energy was related to the main peak of the energy loss function, which was approximately 10â¯eV. The static value of the dielectric constant and the refraction were close to the experimental values. In general, slab TaNO shows different properties and is more suitable for optoelectronic applications due to direct bandgap.