Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Biol ; 14(6): 065003, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28635615

RESUMO

Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.


Assuntos
Actinas/metabolismo , Fibroblastos Associados a Câncer/fisiologia , Adesão Celular , Adesões Focais/fisiologia , Fibras de Estresse/metabolismo , Humanos , Nanoestruturas/análise
2.
Sci Rep ; 6: 28805, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27353427

RESUMO

Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Proteínas do Citoesqueleto/fisiologia , Fosfoproteínas/fisiologia , Actinas/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Adesão Celular , Células Cultivadas , Adesões Focais/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Mecanotransdução Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA