Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 48, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581031

RESUMO

BACKGROUND: This research focused on the development of a motor imagery (MI) based brain-machine interface (BMI) using deep learning algorithms to control a lower-limb robotic exoskeleton. The study aimed to overcome the limitations of traditional BMI approaches by leveraging the advantages of deep learning, such as automated feature extraction and transfer learning. The experimental protocol to evaluate the BMI was designed as asynchronous, allowing subjects to perform mental tasks at their own will. METHODS: A total of five healthy able-bodied subjects were enrolled in this study to participate in a series of experimental sessions. The brain signals from two of these sessions were used to develop a generic deep learning model through transfer learning. Subsequently, this model was fine-tuned during the remaining sessions and subjected to evaluation. Three distinct deep learning approaches were compared: one that did not undergo fine-tuning, another that fine-tuned all layers of the model, and a third one that fine-tuned only the last three layers. The evaluation phase involved the exclusive closed-loop control of the exoskeleton device by the participants' neural activity using the second deep learning approach for the decoding. RESULTS: The three deep learning approaches were assessed in comparison to an approach based on spatial features that was trained for each subject and experimental session, demonstrating their superior performance. Interestingly, the deep learning approach without fine-tuning achieved comparable performance to the features-based approach, indicating that a generic model trained on data from different individuals and previous sessions can yield similar efficacy. Among the three deep learning approaches compared, fine-tuning all layer weights demonstrated the highest performance. CONCLUSION: This research represents an initial stride toward future calibration-free methods. Despite the efforts to diminish calibration time by leveraging data from other subjects, complete elimination proved unattainable. The study's discoveries hold notable significance for advancing calibration-free approaches, offering the promise of minimizing the need for training trials. Furthermore, the experimental evaluation protocol employed in this study aimed to replicate real-life scenarios, granting participants a higher degree of autonomy in decision-making regarding actions such as walking or stopping gait.


Assuntos
Interfaces Cérebro-Computador , Aprendizado Profundo , Exoesqueleto Energizado , Humanos , Algoritmos , Extremidade Inferior , Eletroencefalografia/métodos
2.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447728

RESUMO

A new pandemic was declared at the end of 2019 because of coronavirus disease 2019 (COVID-19). One of the effects of COVID-19 infection is anosmia (i.e., a loss of smell). Unfortunately, this olfactory dysfunction is persistent in around 5% of the world's population, and there is not an effective treatment for it yet. The aim of this paper is to describe a potential non-invasive neurostimulation strategy for treating persistent anosmia in post-COVID-19 patients. In order to design the neurostimulation strategy, 25 subjects who experienced anosmia due to COVID-19 infection underwent an olfactory assessment while their electroencephalographic (EEG) signals were recorded. These signals were used to investigate the activation of brain regions during the olfactory process and identify which regions would be suitable for neurostimulation. Afterwards, 15 subjects participated in the evaluation of the neurostimulation strategy, which was based on applying transcranial direct current stimulation (tDCS) in selected brain regions related to olfactory function. The results showed that subjects with lower scores in the olfactory assessment obtained greater improvement than the other subjects. Thus, tDCS could be a promising option for people who have not fully regained their sense of smell following COVID-19 infection.


Assuntos
COVID-19 , Transtornos do Olfato , Estimulação Transcraniana por Corrente Contínua , Humanos , COVID-19/complicações , COVID-19/terapia , Anosmia/terapia , Anosmia/etiologia , SARS-CoV-2 , Transtornos do Olfato/terapia , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/etiologia , Olfato/fisiologia
3.
Sensors (Basel) ; 22(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408306

RESUMO

Stroke is a medical condition characterized by the rapid loss of focal brain function. Post-stroke patients attend rehabilitation training to prevent the degeneration of physical function and improve upper limb movements and functional status after stroke. Promising rehabilitation therapies include functional electrical stimulation (FES), exergaming, and virtual reality (VR). This work presents a biomechanical assessment of 13 post-stroke patients with hemiparesis before and after rehabilitation therapy for two months with these three methods. Patients performed two tests (Maximum Forward Reach and Apley Scratching) where maximum angles, range of motion, angular velocities, and execution times were measured. A Wilcoxon test was performed (p = 0.05) to compare the variables before and after the therapy for paretic and non-paretic limbs. Significant differences were found in range of motion in flexion-extension, adduction-abduction, and internal-external rotation of the shoulder. Increases were found in flexion-extension, 17.98%, and internal-external rotation, 18.12%, after therapy in the Maximum Forward Reach Test. For shoulder adduction-abduction, the increase found was 20.23% in the Apley Scratching Test, supporting the benefits of rehabilitation therapy that combines FES, exergaming, and VR in the literature.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Realidade Virtual , Estimulação Elétrica/métodos , Humanos , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior
4.
World J Surg ; 45(5): 1262-1271, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33620540

RESUMO

INTRODUCTION: Enhanced recovery after surgery (ERAS) has been shown to facilitate discharge, decrease length of stay, improve outcomes and reduce costs. We used this concept to design a comprehensive fast-track pathway (OR-to-discharge) before starting our liver transplant activity and then applied this protocol prospectively to every patient undergoing liver transplantation at our institution, monitoring the results periodically. We now report our first six years results. PATIENTS AND METHODS: Prospective cohort study of all the liver transplants performed at our institution for the first six years. Balanced general anesthesia, fluid restriction, thromboelastometry, inferior vena cava preservation and temporary portocaval shunt were strategies common to all cases. Standard immunosuppression administered included steroids, tacrolimus (delayed in the setting of renal impairment, with basiliximab induction added) and mycophenolate mofetil. Tacrolimus dosing was adjusted using a Bayesian estimation methodology. Oral intake and ambulation were started early. RESULTS: A total of 240 transplants were performed in 236 patients (191♂/45♀) over 74 months, mean age 56.3±9.6 years, raw MELD score 15.5±7.7. Predominant etiologies were alcohol (n = 136) and HCV (n = 82), with hepatocellular carcinoma present in 129 (54.7%). Nine patients received combined liver and kidney transplants. The mean operating time was 315±64 min with cold ischemia times of 279±88 min. Thirty-one patients (13.1%) were transfused in the OR (2.4±1.2 units of PRBC). Extubation was immediate (< 30 min) in all but four patients. Median ICU length of stay was 12.7 hours, and median post-transplant hospital stay was 4 days (2-76) with 30 patients (13.8%) going home by day 2, 87 (39.9%) by day 3, and 133 (61%) by day 4, defining our fast-track group. Thirty-day-readmission rate (34.9%) was significantly lower (28.6% vs. 44.7% p=0.015) in the fast-track group. Patient survival was 86.8% at 1 year and 78.6% at five years. CONCLUSION: Fast-Tracking of Liver Transplant patients is feasible and can be applied as the standard of care.


Assuntos
Recuperação Pós-Cirúrgica Melhorada , Transplante de Fígado , Idoso , Teorema de Bayes , Humanos , Tempo de Internação , Pessoa de Meia-Idade , Estudos Prospectivos
5.
Sensors (Basel) ; 19(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835546

RESUMO

The aim of this paper is to describe new methods for detecting the appearance of unexpected obstacles during normal gait from EEG signals, improving the accuracy and reducing the false positive rate obtained in previous studies. This way, an exoskeleton for rehabilitation or assistance of people with motor limitations commanded by a Brain-Machine Interface (BMI) could be stopped in case that an obstacle suddenly appears during walking. The EEG data of nine healthy subjects were collected during their normal gait while an obstacle appearance was simulated by the projection of a laser line in a random pattern. Different approaches were considered for selecting the parameters of the BMI: subsets of electrodes, time windows and classifier probabilities, which were based on a linear discriminant analysis (LDA). The pseudo-online results of the BMI for detecting the appearance of obstacles, with an average percentage of 63.9% of accuracy and 2.6 false positives per minute, showed a significant improvement over previous studies.


Assuntos
Eletroencefalografia/métodos , Marcha/fisiologia , Monitorização Fisiológica , Caminhada/fisiologia , Adulto , Algoritmos , Interfaces Cérebro-Computador , Eletrodos , Exoesqueleto Energizado , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador
6.
Sensors (Basel) ; 18(4)2018 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-29642493

RESUMO

The purpose of this work is to strengthen the cortical excitability over the primary motor cortex (M1) and the cerebro-cerebellar pathway by means of a new transcranial direct current stimulation (tDCS) configuration to detect lower limb motor imagery (MI) in real time using two different cognitive neural states: relax and pedaling MI. The anode is located over the primary motor cortex in Cz, and the cathode over the right cerebro-cerebellum. The real-time brain-computer interface (BCI) designed is based on finding, for each electrode selected, the power at the particular frequency where the most difference between the two mental tasks is observed. Electroencephalographic (EEG) electrodes are placed over the brain's premotor area (PM), M1, supplementary motor area (SMA) and primary somatosensory cortex (S1). A single-blind study is carried out, where fourteen healthy subjects are separated into two groups: sham and active tDCS. Each subject is experimented on for five consecutive days. On all days, the results achieved by the active tDCS group were over 60% in real-time detection accuracy, with a five-day average of 62.6%. The sham group eventually reached those levels of accuracy, but it needed three days of training to do so.

7.
J Neuroeng Rehabil ; 14(1): 9, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143603

RESUMO

BACKGROUND: One of the current challenges in brain-machine interfacing is to characterize and decode upper limb kinematics from brain signals, e.g. to control a prosthetic device. Recent research work states that it is possible to do so based on low frequency EEG components. However, the validity of these results is still a matter of discussion. In this paper, we assess the feasibility of decoding upper limb kinematics from EEG signals in center-out reaching tasks during passive and active movements. METHODS: The decoding of arm movement was performed using a multidimensional linear regression. Passive movements were analyzed using the same methodology to study the influence of proprioceptive sensory feedback in the decoding. Finally, we evaluated the possible advantages of classifying reaching targets, instead of continuous trajectories. RESULTS: The results showed that arm movement decoding was significantly above chance levels. The results also indicated that EEG slow cortical potentials carry significant information to decode active center-out movements. The classification of reached targets allowed obtaining the same conclusions with a very high accuracy. Additionally, the low decoding performance obtained from passive movements suggests that discriminant modulations of low-frequency neural activity are mainly related to the execution of movement while proprioceptive feedback is not sufficient to decode upper limb kinematics. CONCLUSIONS: This paper contributes to the assessment of feasibility of using linear regression methods to decode upper limb kinematics from EEG signals. From our findings, it can be concluded that low frequency bands concentrate most of the information extracted from upper limb kinematics decoding and that decoding performance of active movements is above chance levels and mainly related to the activation of cortical motor areas. We also show that the classification of reached targets from decoding approaches may be a more suitable real-time methodology than a direct decoding of hand position.


Assuntos
Mapeamento Encefálico/métodos , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Movimento/fisiologia , Fenômenos Biomecânicos/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Extremidade Superior
8.
J Neuroeng Rehabil ; 14(1): 31, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28420382

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) is a technique for brain modulation that has potential to be used in motor neurorehabilitation. Considering that the cerebellum and motor cortex exert influence on the motor network, their stimulation could enhance motor functions, such as motor imagery, and be utilized for brain-computer interfaces (BCIs) during motor neurorehabilitation. METHODS: A new tDCS montage that influences cerebellum and either right-hand or feet motor area is proposed and validated with a simulation of electric field. The effect of current density (0, 0.02, 0.04 or 0.06 mA/cm2) on electroencephalographic (EEG) classification into rest or right-hand/feet motor imagery was evaluated on 5 healthy volunteers for different stimulation modalities: 1) 10-minutes anodal tDCS before EEG acquisition over right-hand or 2) feet motor cortical area, and 3) 4-seconds anodal tDCS during EEG acquisition either on right-hand or feet cortical areas before each time right-hand or feet motor imagery is performed. For each subject and tDCS modality, analysis of variance and Tukey-Kramer multiple comparisons tests (p <0.001) are used to detect significant differences between classification accuracies that are obtained with different current densities. For tDCS modalities that improved accuracy, t-tests (p <0.05) are used to compare µ and ß band power when a specific current density is provided against the case of supplying no stimulation. RESULTS: The proposed montage improved the classification of right-hand motor imagery for 4 out of 5 subjects when the highest current was applied for 10 minutes over the right-hand motor area. Although EEG band power changes could not be related directly to classification improvement, tDCS appears to affect variably different motor areas on µ and/or ß band. CONCLUSIONS: The proposed montage seems capable of enhancing right-hand motor imagery detection when the right-hand motor area is stimulated. Future research should be focused on applying higher currents over the feet motor cortex, which is deeper in the brain compared to the hand motor cortex, since it may allow observation of effects due to tDCS. Also, strategies for improving analysis of EEG respect to accuracy changes should be implemented.


Assuntos
Mapeamento Encefálico/métodos , Cerebelo/fisiologia , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Interfaces Cérebro-Computador , Eletroencefalografia , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Imaginação , Masculino
9.
J Neuroeng Rehabil ; 12: 92, 2015 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-26476869

RESUMO

BACKGROUND: As a consequence of the increase of cerebro-vascular accidents, the number of people suffering from motor disabilities is raising. Exoskeletons, Functional Electrical Stimulation (FES) devices and Brain-Machine Interfaces (BMIs) could be combined for rehabilitation purposes in order to improve therapy outcomes. METHODS: In this work, a system based on a hybrid upper limb exoskeleton is used for neurological rehabilitation. Reaching movements are supported by the passive exoskeleton ArmeoSpring and FES. The movement execution is triggered by an EEG-based BMI. The BMI uses two different methods to interact with the exoskeleton from the user's brain activity. The first method relies on motor imagery tasks classification, whilst the second one is based on movement intention detection. RESULTS: Three healthy users and five patients with neurological conditions participated in the experiments to verify the usability of the system. Using the BMI based on motor imagery, healthy volunteers obtained an average accuracy of 82.9 ± 14.5 %, and patients obtained an accuracy of 65.3 ± 9.0 %, with a low False Positives rate (FP) (19.2 ± 10.4 % and 15.0 ± 8.4 %, respectively). On the other hand, by using the BMI based on detecting the arm movement intention, the average accuracy was 76.7 ± 13.2 % for healthy users and 71.6 ± 15.8 % for patients, with 28.7 ± 19.9 % and 21.2 ± 13.3 % of FP rate (healthy users and patients, respectively). CONCLUSIONS: The accuracy of the results shows that the combined use of a hybrid upper limb exoskeleton and a BMI could be used for rehabilitation therapies. The advantage of this system is that the user is an active part of the rehabilitation procedure. The next step will be to verify what are the clinical benefits for the patients using this new rehabilitation procedure.


Assuntos
Interfaces Cérebro-Computador , Exoesqueleto Energizado , Doenças do Sistema Nervoso/reabilitação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Extremidade Superior/fisiologia
10.
Sensors (Basel) ; 14(10): 18172-86, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25268915

RESUMO

This paper presents a methodology to detect the intention to make a reaching movement with the arm in healthy subjects before the movement actually starts. This is done by measuring brain activity through electroencephalographic (EEG) signals that are registered by electrodes placed over the scalp. The preparation and performance of an arm movement generate a phenomenon called event-related desynchronization (ERD) in the mu and beta frequency bands. A novel methodology to characterize this cognitive process based on three sums of power spectral frequencies involved in ERD is presented. The main objective of this paper is to set the benchmark for classifiers and to choose the most convenient. The best results are obtained using an SVM classifier with around 72% accuracy. This classifier will be used in further research to generate the control commands to move a robotic exoskeleton that helps people suffering from motor disabilities to perform the movement. The final aim is that this brain-controlled robotic exoskeleton improves the current rehabilitation processes of disabled people.


Assuntos
Braço/fisiologia , Interfaces Cérebro-Computador , Eletroencefalografia , Movimento/fisiologia , Adulto , Mapeamento Encefálico , Potenciais Evocados , Feminino , Humanos , Intenção , Masculino
11.
Front Neuroinform ; 18: 1345425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486923

RESUMO

Introduction: In recent years, the decoding of motor imagery (MI) from electroencephalography (EEG) signals has become a focus of research for brain-machine interfaces (BMIs) and neurorehabilitation. However, EEG signals present challenges due to their non-stationarity and the substantial presence of noise commonly found in recordings, making it difficult to design highly effective decoding algorithms. These algorithms are vital for controlling devices in neurorehabilitation tasks, as they activate the patient's motor cortex and contribute to their recovery. Methods: This study proposes a novel approach for decoding MI during pedalling tasks using EEG signals. A widespread approach is based on feature extraction using Common Spatial Patterns (CSP) followed by a linear discriminant analysis (LDA) as a classifier. The first approach covered in this work aims to investigate the efficacy of a task-discriminative feature extraction method based on CSP filter and LDA classifier. Additionally, the second alternative hypothesis explores the potential of a spectro-spatial Convolutional Neural Network (CNN) to further enhance the performance of the first approach. The proposed CNN architecture combines a preprocessing pipeline based on filter banks in the frequency domain with a convolutional neural network for spectro-temporal and spectro-spatial feature extraction. Results and discussion: To evaluate the approaches and their advantages and disadvantages, EEG data has been recorded from several able-bodied users while pedalling in a cycle ergometer in order to train motor imagery decoding models. The results show levels of accuracy up to 80% in some cases. The CNN approach shows greater accuracy despite higher instability.

12.
iScience ; 26(5): 106675, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250318

RESUMO

This study explores the use of a brain-computer interface (BCI) based on motor imagery (MI) for the control of a lower limb exoskeleton to aid in motor recovery after a neural injury. The BCI was evaluated in ten able-bodied subjects and two patients with spinal cord injuries. Five able-bodied subjects underwent a virtual reality (VR) training session to accelerate training with the BCI. Results from this group were compared with a control group of five able-bodied subjects, and it was found that the employment of shorter training by VR did not reduce the effectiveness of the BCI and even improved it in some cases. Patients gave positive feedback about the system and were able to handle experimental sessions without reaching high levels of physical and mental exertion. These results are promising for the inclusion of BCI in rehabilitation programs, and future research should investigate the potential of the MI-based BCI system.

13.
Front Neurosci ; 17: 1154480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998726

RESUMO

Introduction: Brain-machine interfaces (BMIs) attempt to establish communication between the user and the device to be controlled. BMIs have great challenges to face in order to design a robust control in the real field of application. The artifacts, high volume of training data, and non-stationarity of the signal of EEG-based interfaces are challenges that classical processing techniques do not solve, showing certain shortcomings in the real-time domain. Recent advances in deep-learning techniques open a window of opportunity to solve some of these problems. In this work, an interface able to detect the evoked potential that occurs when a person intends to stop due to the appearance of an unexpected obstacle has been developed. Material and methods: First, the interface was tested on a treadmill with five subjects, in which the user stopped when an obstacle appeared (simulated by a laser). The analysis is based on two consecutive convolutional networks: the first one to discern the intention to stop against normal walking and the second one to correct false detections of the previous one. Results and discussion: The results were superior when using the methodology of the two consecutive networks vs. only the first one in a cross-validation pseudo-online analysis. The false positives per min (FP/min) decreased from 31.8 to 3.9 FP/min and the number of repetitions in which there were no false positives and true positives (TP) improved from 34.9% to 60.3% NOFP/TP. This methodology was tested in a closed-loop experiment with an exoskeleton, in which the brain-machine interface (BMI) detected an obstacle and sent the command to the exoskeleton to stop. This methodology was tested with three healthy subjects, and the online results were 3.8 FP/min and 49.3% NOFP/TP. To make this model feasible for non-able bodied patients with a reduced and manageable time frame, transfer-learning techniques were applied and validated in the previous tests, and were then applied to patients. The results for two incomplete Spinal Cord Injury (iSCI) patients were 37.9% NOFP/TP and 7.7 FP/min.

14.
Sci Data ; 10(1): 343, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268619

RESUMO

One important point in the development of a brain-machine Interface (BMI) commanding an exoskeleton is the assessment of the cognitive engagement of the subject during the motor imagery tasks conducted. However, there are not many databases that provide electroencephalography (EEG) data during the use of a lower-limb exoskeleton. The current paper presents a database designed with an experimental protocol aiming to assess not only motor imagery during the control of the device, but also the attention to gait on flat and inclined surfaces. The research was conducted as an EUROBENCH subproject in the facilities sited in Hospital Los Madroños, Brunete (Madrid). The data validation reaches accuracies over 70% in the assessment of motor imagery and attention to gait, which marks the present database as a valuable resource for researches interested on developing and testing new EEG-based BMIs.


Assuntos
Eletroencefalografia , Exoesqueleto Energizado , Cognição , Eletroencefalografia/métodos , Extremidade Inferior , Caminhada , Humanos
15.
Biosensors (Basel) ; 12(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892452

RESUMO

In the EEG literature, there is a lack of asynchronous intention models that realistically propose interfaces for applications that must operate in real time. In this work, a novel BMI approach to detect in real time the intention to turn is proposed. For this purpose, an offline, pseudo-online and online analysis is presented to validate the EEG as a biomarker for the intention to turn. This article presents a methodology for the creation of a BMI that could differentiate two classes: monotonous walk and intention to turn. A comparison of some of the most popular algorithms in the literature is conducted. To filter the signal, two relevant algorithms are used: H∞ filter and ASR. For processing and classification, the mean of the covariance matrices in the Riemannian space was calculated and then, with various classifiers of different types, the distance of the test samples to each class in the Riemannian space was estimated. This dispenses with power-based models and the necessary baseline correction, which is a problem in realistic scenarios. In the cross-validation for a generic selection (valid for any subject) and a personalized one, the results were, on average, 66.2% and 69.6% with the best filter H∞. For the pseudo-online, the custom configuration for each subject was an average of 40.2% TP and 9.3 FP/min; the best subject obtained 43.9% TP and 2.9 FP/min. In the final validation test, this subject obtained 2.5 FP/min and an accuracy rate of 71.43%, and the turn anticipation was 0.21 s on average.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Biomarcadores , Eletroencefalografia/métodos , Intenção , Caminhada
16.
Brain Sci ; 12(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35204011

RESUMO

This article presents an exhaustive analysis of the works present in the literature pertaining to transcranial direct current stimulation(tDCS) applications. The aim of this work is to analyze the specific characteristics of lower-limb stimulation, identifying the strengths and weaknesses of these works and framing them with the current knowledge of tDCS. The ultimate goal of this work is to propose areas of improvement to create more effective stimulation therapies with less variability.

17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 402-405, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086011

RESUMO

In this paper, the paradigm of the intention of speed changes from EEG signals with Riemannian classifiers methods is studied in 10 subjects. In addition, the best frequency band and how different electrode configurations affect the accuracy of the model are analyzed. In the prediction of the intention to change speed, results of 68.6% were obtained, in the one of only Increase, results of 64.41 % were obtained, and in the one of only Decrease, results of 71.5% were obtained.


Assuntos
Eletroencefalografia , Intenção , Eletrodos , Eletroencefalografia/métodos , Humanos
18.
Biosensors (Basel) ; 12(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36140136

RESUMO

Nowadays, several strategies for treating neuropsychologic function loss in Parkinson's disease (PD) have been proposed, such as physical activity performance and developing games to exercise the mind. However, few studies illustrate the incidence of these therapies in neuronal activity. This work aims to study the feasibility of a virtual reality-based program oriented to the cognitive functions' rehabilitation of PD patients. For this, the study was divided into intervention with the program, acquisition of signals, data processing, and results analysis. The alpha and beta bands' power behavior was determined by evaluating the electroencephalography (EEG) signals obtained during the execution of control tests and games of the "Hand Physics Lab" Software, from which five games related to attention, planning, and sequencing, concentration, and coordination were taken. Results showed the characteristic performance of the cerebral bands during resting states and activity states. In addition, it was determined that the beta band increased its activity in all the cerebral lobes in all the tested games (p-value < 0.05). On the contrary, just one game exhibited an adequate performance of the alpha band activity of the temporal and frontal lobes (p-value < 0.02). Furthermore, the visual attention and the capacity to process and interpret the information given by the surroundings was favored during the execution of trials (p-value < 0.05); thus, the efficacy of the virtual reality program to recover cognitive functions was verified. The study highlights implementing new technologies to rehabilitate people with neurodegenerative diseases.


Assuntos
Doença de Parkinson , Realidade Virtual , Adulto , Cognição/fisiologia , Eletroencefalografia , Humanos
19.
Front Neurorobot ; 16: 837494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574230

RESUMO

This study examines the feasibility of using a robot-assisted therapy methodology based on the Bobath concept to perform exercises applied in conventional therapy for gait rehabilitation in stroke patients. The aim of the therapy is to improve postural control and movement through exercises based on repetitive active-assisted joint mobilization, which is expected to produce strength changes in the lower limbs. As therapy progresses, robotic assistance is gradually reduced and the patient's burden increases with the goal of achieving a certain degree of independence. The relationship between force and range of motion led to the analysis of both parameters of interest. The study included 23 volunteers who performed 24 sessions, 2 sessions per week for 12 weeks, each lasting about 1 h. The results showed a significant increase in hip abduction and knee flexion strength on both sides, although there was a general trend of increased strength in all joints. However, the range of motion at the hip and ankle joints was reduced. The usefulness of this platform for transferring exercises from conventional to robot-assisted therapies was demonstrated, as well as the benefits that can be obtained in muscle strength training. However, it is suggested to complement the applied therapy with exercises for the maintenance and improvement of the range of motion.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4064-4067, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086336

RESUMO

Spinal Cord Injury (SCI) refers to damage to the spinal cord that can affect different body functionalities. Recovery after SCI depends on multiple factors, being the rehabilitation therapy one of them. New approaches based on robot-assisted training offer the possibility to make training sessions longer and with a reproducible pattern of movements. The control of these robotic devices by means of Brain-Machine Interfaces (BMIs) based on Motor Imagery (MI) favors the patient cognitive engagement during the rehabilitation, promoting mechanisms of neuroplasticity. This research evaluates the acceptance and feedback received from patients with incomplete SCI about the usage of a MI-based BMI with a lower-limb exoskeleton. Clinical Relevance- Patients experienced satisfaction when using the exoskeleton and levels of mental and physical workload were withing reasonable limits. In addition results from the BMI were promising for the inclusion of this type of systems in rehabilitation programs.


Assuntos
Interfaces Cérebro-Computador , Exoesqueleto Energizado , Traumatismos da Medula Espinal , Índice de Massa Corporal , Humanos , Extremidade Inferior , Traumatismos da Medula Espinal/reabilitação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA