Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850422

RESUMO

As wind energy is paving the way for the energy transition from fossil to renewable energy sources, the ongoing trend of increasing the rated power of wind turbines aims to reduce the overall cost of wind energy. The resulting increase in drivetrain loads motivates the need for wind turbine (WT) drivetrain testing in the development phase of critical components such as the WT main gearbox (GB). While several WT system test benches allow for the application of emulated rotor loads in six degrees of freedom (6-DOF), the drivetrain input loads can significantly differ from the GB 6-DOF input loads due to the design of the drivetrain under test. However, currently available load measurement solutions are not capable of sensing GB input loads in 6-DOF. Thus, this work aims to develop a methodology for converging signals from a purposely designed sensor setup and turbine specific design parameters to compute the GB 6-DOF input loads during WT testing. Strain gauges (SG) and accelerometers have been installed on the low-speed shaft (LSS) of a WT drivetrain under test at the 4MW WT system test bench at the Center for Wind Power Drives. Using the data of the aforementioned sensors, a methodology for computing the GB input loads is developed. The methodology is validated through comparison to the applied loads data provided by the aforementioned test bench. The results demonstrate the high promise of the proposed method for estimating the GB input loads during WT drivetrain testing.

2.
Sensors (Basel) ; 22(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632067

RESUMO

The ongoing trend of building larger wind turbines (WT) to reach greater economies of scale is contributing to the reduction in cost of wind energy, as well as the increase in WT drivetrain input loads into uncharted territories. The resulting intensification of the load situation within the WT gearbox motivates the need to monitor WT transmission input loads. However, due to the high costs of direct measurement solutions, more economical solutions, such as virtual sensing of transmission input loads using stationary sensors mounted on the gearbox housing or other drivetrain locations, are of interest. As the number, type, and location of sensors needed for a virtual sensing solutions can vary considerably in cost, in this investigation, we aimed to identify optimal sensor locations for virtually sensing WT 6-degree of freedom (6-DOF) transmission input loads. Random forest (RF) models were designed and applied to a dataset containing simulated operational data of a Vestas V52 WT multibody simulation model undergoing simulated wind fields. The dataset contained the 6-DOF transmission input loads and signals from potential sensor locations covering deformations, misalignments, and rotational speeds at various drivetrain locations. The RF models were used to identify the sensor locations with the highest impact on accuracy of virtual load sensing following a known statistical test in order to prioritize and reduce the number of needed input signals. The performance of the models was assessed before and after reducing the number of input signals required. By allowing for a screening of sensors prior to real-world tests, the results demonstrate the high promise of the proposed method for optimizing the cost of future virtual WT transmission load sensors.


Assuntos
Aprendizado de Máquina , Pesquisa , Simulação por Computador , Fenômenos Físicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA