Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448732

RESUMO

There is an urgent need for innovative strategies to raise the performance of environmentally stressed plants. The seeds of single-cross yellow Zea mays (L.) hybrid Giza-168 were soaked in Cis-(c-Z-Ck) or trans-zeatin-type cytokinin (t-Z-Ck) solutions at a concentration of 50 or 40 µM, respectively. Salinity stress was imposed at 0, 75 or 150 mM NaCl in the Hoagland nutrient solution (full strength) used for irrigation. The total carotenoids content was negatively affected by only 150 mM NaCl, while both 75 and 150 mM NaCl negatively affected the growth and yield components, relative water content, membrane stability index, photochemical activity, gas exchange, K+ and chlorophyll contents, K+/Na+ ratio, and photosynthetic efficiency. However, all of these traits were significantly improved by c-Z-Ck pretreatment and further enhanced by t-Z-Ck pretreatment compared with the corresponding controls. Furthermore, the contents of proline, soluble sugars, ascorbate, and glutathione, as well as enzymatic antioxidant activities, were significantly elevated by both salt stress concentrations and increased more by both biostimulators compared to the control. Compared to c-Z-Ck, t-Z-Ck was superior in mitigating the harmful effects of the high H2O2 levels caused by salt stress on the levels of malondialdehyde and ion leakage compared to the control. Under normal or stress conditions, t-Z-Ck pretreatment was better than c-Z-Ck pretreatment, while both positively affected maize hormonal contents. As a result, t-Z-Ck is recommended to enhance the growth and productivity of maize plants by suppressing the effects of oxidative stress caused by saline water irrigation.

2.
Saudi J Biol Sci ; 29(4): 2148-2162, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531163

RESUMO

Fifteen alfalfa populations were tested for resistance to the seedling damping-off disease sourced by Rhizoctonia solani, Fusarium solani, and Macrophomina phaseolina. In a laboratory experiment, saponin treatment significantly diminished the mycelial growth of the causal fungi of alfalfa damping-off disease. Roots of the fifteen alfalfa populations varied in saponin and lignin content. Selection for the considerably resistant plants leads to the best growth performance, desirable yield, and high nutritive values such as crude protein (CP), crude fier (CF), nitrogen free extract (NFE), ash, and ether extract (EE) contents. For the PCR reaction, 10 SSR pairs of the JESPR series primers and the cDNA-SCoT technique with seven primers were used. SSR and SCoT revealed some unique markers that could be linked to resistance to damping-off disease in alfalfa that appeared in the considerably resistant alfalfa population (the promised pop.). SSR and SCoT markers can be an excellent molecular method for judging genetic diversity and germplasm classification in tetraploid alfalfa. We recommend breeding for saponin concentration in the alfalfa plant may affect resistance to some diseases like root rot and damping-off because saponin might improve plant growth, yield, and nutritional values.

3.
Plants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924281

RESUMO

Stevia rebaudiana Bertoni is a little bush, which is cultivated on a large scale in many countries for medicinal purposes and used as a natural sweetener in food products. The present work aims to conduct a protocol for stevia propagation in vitro to produce and introduce Stevia rebaudiana plants as a new sweetener crop to Egyptian agriculture. To efficiently maximize its propagation, it is important to study the influence of stress factors on the growth and development of Stevia rebaudiana grown in vitro. Two stevia varieties were investigated (Sugar High A3 and Spanti) against salt stress. Leaves were used as the source of explants for callus initiation, regeneration, multiplication and rooting. Some stress-related traits, i.e., photosynthetic pigments, proline contents, and enzyme activity for peroxidase (POD), polyphenol oxidase (PPO), and malate dehydrogenase (MDH) were studied. Murashig and Skoog (MS) medium was supplemented with four NaCl concentrations: 500, 1000, 2000, and 3000 mgL-1, while a salt-free medium was used as the control. The data revealed that salinity negatively affected all studied characters: the number of surviving calli, regeneration%, shoot length, the number of multiple shoots, number of leaf plantlets-1, number of root plantlets-1, and root length. The data also revealed that Sugar High A3 is more tolerant than Spanti. The total chlorophyll content decreased gradually with increasing NaCl concentration. However, the opposite was true for proline content. Isozyme's fractionation exhibited high levels of variability among the two varieties. Various biochemical parameters associated with salt tolerance were detected in POD. Namely, POD4, POD6, POD 9 at an Rf of 0.34, 0.57, and 0.91 in the Sugar High A3 variety under high salt concentration conditions, as well as POD 10 at an Rf of 0.98 in both varieties under high salt concentrations. In addition, the overexpression of POD 5 and POD 10 at Rf 0.52 and 0.83 was found in both varieties at high NaCl concentrations. Biochemical parameters associated with salt tolerance were detected in PPO (PPO1, PPO2 and PPO4 at an Rf of 0.38, 0.42 and 0.62 in the Sugar High A3 variety under high salt concentrations) and MDH (MDH 3 at an Rf of 0.40 in both varieties at high salt concentrations). Therefore, these could be considered as important biochemical markers associated with salt tolerance and could be applied in stevia breeding programs (marker-assisted selection). This investigation recommends stevia variety Sugar High A3 to be cultivated under salt conditions.

4.
Plants (Basel) ; 10(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34834678

RESUMO

A biostimulant is any microorganism or substance used to enhance the efficiency of nutrition, tolerance to abiotic stress and/or quality traits of crops, depending on its contents from nutrients. Plant biostimulants like honey bee (HB) and silymarin (Sm) are a strategic trend for managing stressed crops by promoting nutritional and hormonal balance, regulating osmotic protectors, antioxidants, and genetic potential, reflecting plant growth and productivity. We applied diluted honey bee (HB) and silymarin-enriched honey bee (HB- Sm) as foliar nourishment to investigate their improving influences on growth, yield, nutritional and hormonal balance, various osmoprotectant levels, different components of antioxidant system, and genetic potential of chili pepper plants grown under NaCl-salinity stress (10 dS m‒1). HB significantly promoted the examined attributes and HB-Sm conferred optimal values, including growth, productivity, K+/Na+ ratio, capsaicin, and Sm contents. The antioxidative defense components were significantly better than those obtained with HB alone. Conversely, levels of oxidative stress markers (superoxide ions and hydrogen peroxide) and parameters related to membrane damage (malondialdehyde level, stability index, ionic leakage, Na+, and Cl- contents) were significantly reduced. HB-Sm significantly affects inactive gene expression, as a natural biostimulator silencing active gene expression. SCoT primers were used as proof in salt-treated or untreated chili pepper plants. There were 41 cDNA amplicons selected by SCoT-primers. Twenty of them were EcDNA amplicons (cDNA-amplicons that enhanced their genes by one or more treatments) representing 49% of all cDNA amplicons, whereas 7 amplicons for ScDNA (whose genes were silenced in one or more treatments) represented 17%, and 14 McDNA (monomorphic cDNA-amplicons with control) amplicons were represented by 34% from all cDNA amplicons. This indicates the high effect of BH-Sm treatments in expression enhancement of some inactive genes and their silenced effect for expression of some active genes, also confirming that cDNA-SCoT markers succeeded in detection of variable gene expression patterns between the untreated and treated plants. In conclusion, HB-Sm as a natural multi-biostimulator can attenuate salt stress effects in chili pepper plants by remodeling the antioxidant defense system and ameliorating plant productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA