Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Monit Assess ; 196(3): 248, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332337

RESUMO

Increases in fluxes of nitrogen (N) and phosphorus (P) in the environment have led to negative impacts affecting drinking water, eutrophication, harmful algal blooms, climate change, and biodiversity loss. Because of the importance, scale, and complexity of these issues, it may be useful to consider methods for prioritizing nutrient research in representative drainage basins within a regional or national context. Two systematic, quantitative approaches were developed to (1) identify basins that geospatial data suggest are most impacted by nutrients and (2) identify basins that have the most variability in factors affecting nutrient sources and transport in order to prioritize basins for studies that seek to understand the key drivers of nutrient impacts. The "impact" approach relied on geospatial variables representing surface-water and groundwater nutrient concentrations, sources of N and P, and potential impacts on receptors (i.e., ecosystems and human health). The "variability" approach relied on geospatial variables representing surface-water nutrient concentrations, factors affecting sources and transport of nutrients, model accuracy, and potential receptor impacts. One hundred and sixty-three drainage basins throughout the contiguous United States were ranked nationally and within 18 hydrologic regions. Nationally, the top-ranked basins from the impact approach were concentrated in the Midwest, while those from the variability approach were dispersed across the nation. Regionally, the top-ranked basin selected by the two approaches differed in 15 of the 18 regions, with top-ranked basins selected by the variability approach having lower minimum concentrations and larger ranges in concentrations than top-ranked basins selected by the impact approach. The highest ranked basins identified using the variability approach may have advantages for exploring how landscape factors affect surface-water quality and how surface-water quality may affect ecosystems. In contrast, the impact approach prioritized basins in terms of human development and nutrient concentrations in both surface water and groundwater, thereby targeting areas where actions to reduce nutrient concentrations could have the largest effect on improving water availability and reducing ecosystem impacts.


Assuntos
Ecossistema , Rios , Humanos , Monitoramento Ambiental , Eutrofização , Proliferação Nociva de Algas , Nutrientes , Fósforo/análise , Nitrogênio/análise
2.
Rapid Commun Mass Spectrom ; 32(15): 1207-1214, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29729051

RESUMO

RATIONALE: Despite a long history and growing interest in isotopic analyses of N2 O, there is a lack of isotopically characterized N2 O isotopic reference materials (standards) to enable normalization and reporting of isotope-delta values. Here we report the isotopic characterization of two pure N2 O gas reference materials, USGS51 and USGS52, which are now available for laboratory calibration (https://isotopes.usgs.gov/lab/referencematerials.html). METHODS: A total of 400 sealed borosilicate glass tubes of each N2 O reference gas were prepared from a single gas filling of a high vacuum line. We demonstrated isotopic homogeneity via dual-inlet isotope-ratio mass spectrometry. Isotopic analyses of these reference materials were obtained from eight laboratories to evaluate interlaboratory variation and provide preliminary isotopic characterization of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and site preference (SP ) values. RESULTS: The isotopic homogeneity of both USGS51 and USGS52 was demonstrated by one-sigma standard deviations associated with the determinations of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and SP values of 0.12 mUr or better. The one-sigma standard deviations of SP measurements of USGS51 and USGS52 reported by eight laboratories participating in the interlaboratory comparison were 1.27 and 1.78 mUr, respectively. CONCLUSIONS: The agreement of isotope-delta values obtained in the interlaboratory comparison was not sufficient to provide reliable accurate isotope measurement values for USGS51 and USGS52. We propose that provisional values for the isotopic composition of USGS51 and USGS52 determined at the Tokyo Institute of Technology can be adopted for normalizing and reporting sample data until further refinements are achieved through additional calibration efforts.

3.
Rapid Commun Mass Spectrom ; 31(1): 85-110, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27699906

RESUMO

RATIONALE: Perchlorate (ClO4- ) is a common trace constituent of water, soils, and plants; it has both natural and synthetic sources and is subject to biodegradation. The stable isotope ratios of Cl and O provide three independent quantities for ClO4- source attribution and natural attenuation studies: δ37 Cl, δ18 O, and δ17 O (or Δ17 O or 17 Δ) values. Documented reference materials, calibration schemes, methods, and interferences will improve the reliability of such studies. METHODS: Three large batches of KClO4 with contrasting isotopic compositions were synthesized and analyzed against VSMOW-SLAP, atmospheric O2 , and international nitrate and chloride reference materials. Three analytical methods were tested for O isotopes: conversion of ClO4- to CO for continuous-flow IRMS (CO-CFIRMS), decomposition to O2 for dual-inlet IRMS (O2-DIIRMS), and decomposition to O2 with molecular-sieve trap (O2-DIIRMS+T). For Cl isotopes, KCl produced by thermal decomposition of KClO4 was reprecipitated as AgCl and converted into CH3 Cl for DIIRMS. RESULTS: KClO4 isotopic reference materials (USGS37, USGS38, USGS39) represent a wide range of Cl and O isotopic compositions, including non-mass-dependent O isotopic variation. Isotopic fractionation and exchange can affect O isotope analyses of ClO4- depending on the decomposition method. Routine analyses can be adjusted for such effects by normalization, using reference materials prepared and analyzed as samples. Analytical errors caused by SO42- , NO3- , ReO42- , and C-bearing contaminants include isotope mixing and fractionation effects on CO and O2 , plus direct interference from CO2 in the mass spectrometer. The results highlight the importance of effective purification of ClO4- from environmental samples. CONCLUSIONS: KClO4 reference materials are available for testing methods and calibrating isotopic data for ClO4- and other substances with widely varying Cl or O isotopic compositions. Current ClO4- extraction, purification, and analysis techniques provide relative isotope-ratio measurements with uncertainties much smaller than the range of values in environmental ClO4- , permitting isotopic evaluation of environmental ClO4- sources and natural attenuation. Copyright © 2016 John Wiley & Sons, Ltd.

4.
Appl Environ Microbiol ; 82(11): 3297-3309, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016566

RESUMO

UNLABELLED: Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in (15)N were observed during biodegradation of RDX via anaerobic ring cleavage (ε(15)N = -12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε(15)N = -9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε(15)N = -2.4‰ ± 0.2‰). (13)C enrichment was negligible during aerobic RDX biodegradation (ε(13)C = -0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε(13)C = -4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε(13)C/ε(15)N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ(15)N value of +9‰, δ(15)N values of the NO2 (-) released from RDX ranged from -7‰ to +2‰ during aerobic biodegradation and from -42‰ to -24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2 (-) production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε(15)N-NO2 (-) values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2 (-) formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted. IMPORTANCE: This work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also provides data on the isotopic effects observed in the nitrite produced during RDX biodegradation. Both of these results could lead to better understanding of the fate of RDX in the environment and help improve monitoring and remediation technologies.


Assuntos
Bactérias/metabolismo , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Triazinas/metabolismo , Aerobiose , Anaerobiose , Biotransformação , Marcação por Isótopo , Fatores de Tempo
5.
Environ Sci Technol ; 50(2): 593-603, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26709616

RESUMO

Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.


Assuntos
Substâncias Explosivas/análise , Água Subterrânea/análise , Nitratos/análise , Poluentes Químicos da Água/análise , Indústria da Construção , Monitoramento Ambiental , New Hampshire , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Meios de Transporte
6.
Environ Sci Technol ; 49(20): 12169-77, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26401911

RESUMO

Anaerobic ammonium oxidation (anammox) couples the oxidation of ammonium with the reduction of nitrite, producing N2. The presence and activity of anammox bacteria in groundwater were investigated at multiple locations in an aquifer variably affected by a large, wastewater-derived contaminant plume. Anammox bacteria were detected at all locations tested using 16S rRNA gene sequencing and quantification of hydrazine oxidoreductase (hzo) gene transcripts. Anammox and denitrification activities were quantified by in situ (15)NO2(-) tracer tests along anoxic flow paths in areas of varying ammonium, nitrate, and organic carbon abundances. Rates of denitrification and anammox were determined by quantifying changes in (28)N2, (29)N2, (30)N2, (15)NO3(-), (15)NO2(-), and (15)NH4(+) with groundwater travel time. Anammox was present and active in all areas tested, including where ammonium and dissolved organic carbon concentrations were low, but decreased in proportion to denitrification when acetate was added to increase available electron supply. Anammox contributed 39-90% of potential N2 production in this aquifer, with rates on the order of 10 nmol N2-N L(-1) day(-1). Although rates of both anammox and denitrification during the tracer tests were low, they were sufficient to reduce inorganic nitrogen concentrations substantially during the overall groundwater residence times in the aquifer. These results demonstrate that anammox activity in groundwater can rival that of denitrification and may need to be considered when assessing nitrogen mass transport and permanent loss of fixed nitrogen in aquifers.


Assuntos
Compostos de Amônio/metabolismo , Água Doce/química , Água Subterrânea/química , Nitrogênio/isolamento & purificação , Anaerobiose , Bactérias/genética , Biodegradação Ambiental , Desnitrificação , Água Doce/microbiologia , Gases/análise , Geografia , Água Subterrânea/microbiologia , Massachusetts , Oxirredução , Filogenia , Fatores de Tempo
7.
Environ Sci Technol ; 49(20): 12223-31, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26375037

RESUMO

2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT ((15)N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ(15)N analysis of sediments, SPM, and tissues revealed large quantities of (15)N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a (15)N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.


Assuntos
Ecossistema , Marcação por Isótopo , Água do Mar/química , Trinitrotolueno/análise , Minerais/química , Nitrogênio/análise , Isótopos de Nitrogênio , Material Particulado/análise , Solubilidade , Poluentes Químicos da Água/análise
8.
J Environ Qual ; 43(3): 980-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25602827

RESUMO

Perchlorate (ClO) is a contaminant that occurs naturally throughout the world, but little is known about its distribution and interactions in terrestrial ecosystems. The objectives of this Amargosa Desert, Nevada study were to determine (i) the local-scale distribution of shallow-soil (0-30 cm) ClO with respect to shrub proximity (far and near) in three geomorphic settings (shoulder slope, footslope, and valley floor); (ii) the importance of soil, plant, and terrain variables on the hillslope-distribution of shallow-soil and creosote bush [ (Sessé & Moc. ex DC.) Coville] ClO; and (iii) atmospheric (wet plus dry, including dust) deposition of ClO in relation to soil and plant reservoirs and cycling. Soil ClO ranged from 0.3 to 5.0 µg kg. Within settings, valley floor ClO was 17× less near shrubs due in part to enhanced leaching, whereas shoulder and footslope values were ∼2× greater near shrubs. Hillslope regression models (soil, = 0.42; leaf, = 0.74) identified topographic and soil effects on ClO deposition, transport, and cycling. Selective plant uptake, bioaccumulation, and soil enrichment were evidenced by leaf ClO concentrations and Cl/ClO molar ratios that were ∼8000× greater and 40× less, respectively, than soil values. Atmospheric deposition ClO flux was 343 mg ha yr, ∼10× that for published southwestern wet-deposition fluxes. Creosote bush canopy ClO (1310 mg ha) was identified as a previously unrecognized but important and active reservoir. Nitrate δO analyses of atmospheric deposition and soil supported the leaf-cycled-ClO input hypothesis. This study provides basic data on ClO distribution and cycling that are pertinent to the assessment of environmental impacts in desert ecosystems and broadly transferable to anthropogenically contaminated systems.

10.
Chemosphere ; 274: 129586, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33529957

RESUMO

Natural chlorate (ClO3-) is widely distributed in terrestrial and extraterrestrial environments. To improve understanding of the origins and distribution of ClO3-, we developed and tested methods to determine the multi-dimensional isotopic compositions (δ18O, Δ17O, δ37Cl, 36Cl/Cl) of ClO3- and then applied the methods to samples of natural nitrate-rich caliche-type salt deposits in the Atacama Desert, Chile, and Death Valley, USA. Tests with reagents and artificial mixed samples indicate stable-isotope ratios were minimally affected by the purification processes. Chlorate extracted from Atacama samples had δ18O = +7.0 to +11.1‰, Δ17O = +5.7 to +6.4‰, δ37Cl = -1.4 to +1.3‰, and 36Cl/Cl = 48 × 10-15 to 104 × 10-15. Chlorate from Death Valley samples had δ18O = -6.9 to +1.6‰, Δ17O = +0.4 to +2.6‰, δ37Cl = +0.8 to +1.0‰, and 36Cl/Cl = 14 × 10-15 to 44 × 10-15. Positive Δ17O values of natural ClO3- indicate that its production involved reaction with O3, while its Cl isotopic composition is consistent with a tropospheric or near-surface source of Cl. The Δ17O and δ18O values of natural ClO3- are positively correlated, as are those of ClO4- and NO3- from the same localities, possibly indicating variation in the relative contributions of O3 as a source of O in the formation of the oxyanions. Additional isotopic analyses of ClO3- could provide stronger constraints on its production mechanisms and/or post-formational alterations, with applications for environmental forensics, global biogeochemical cycling of Cl, and the origins of oxyanions detected on Mars.


Assuntos
Cloratos , Nitratos , Chile , Nitratos/análise
11.
Sci Total Environ ; 745: 140800, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32721618

RESUMO

Hundreds of explosive-contaminated marine sites exist globally, many of which contain the common munitions constituent hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Quantitative information about RDX transformation in coastal ecosystems is essential for management of many of these sites. Isotopically labelled RDX containing 15N in all 3 nitro groups was used to track the fate of RDX in three coastal ecosystem types. Flow-through mesocosms representing subtidal vegetated (silt/eel grass), subtidal non-vegetated (sand) and intertidal marsh ecosystems were continuously loaded with isotopically labelled RDX for 16-17 days. Sediment, pore-water and overlying surface water were analyzed to determine the distribution of RDX, nitroso-triazine transformation products (NXs) and nitrogen containing complete mineralization products, including ammonium, nitrate+nitrite, nitrous oxide and nitrogen gas. The marsh, silt, and sand ecotypes transformed 94%, 90% and 76% of supplied RDX, respectively. Total dissolved NXs accounted for 2%-4% of the transformed 15N-RDX. The majority of RDX transformation in the water column was by mineralization to inorganic N (dissolved and evaded; 64%-78% of transformed 15N-RDX). RDX was mineralized primarily to N2O (62-74% of transformed 15N-RDX) and secondarily to N2 (1-2% of transformed 15N-RDX) which exchanged with the atmosphere. Transformation of RDX was favored in carbon-rich lower redox potential sediments of the silt and marsh mesocosms where anaerobic processes of iron and sulfate reduction were most prevalent. RDX was most persistent in the carbon-poor sand mesocosm. Partitioning of 15N derived from RDX onto sediment and suspended particulates was negligible in the overall mass balance of RDX transformation (2%-3% of transformed 15N-RDX). The fraction of 15N derived from RDX that was sorbed or assimilated in sediment was largest in the marsh mesocosm (most organic carbon), and smallest in the sand mesocosm (largest grain size and least organic carbon). Sediment redox conditions and available organic carbon stores affect the fate of RDX in different coastal marine habitats.

12.
Sci Total Environ ; 685: 574-588, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181534

RESUMO

Concentrations and emissions of greenhouse gases CO2, CH4, and N2O commonly are examined individually in aquatic environments in which each is expected to be relatively important; however, their co-occurrence and dynamic interactions in fluvial settings could provide important information about their controlling biogeochemical processes and potential contributions to global climate change. Spatial and temporal variability of CH4, N2O, and CO2 concentrations were measured from June 1999 to September 2003 in two nitrate-rich (40-1200 µM) streams draining agricultural land in the midwestern USA that differed ~13-fold in flow. Seasonal (biweekly), diel (hourly), and transport-oriented (reach-scale) sampling approaches were compared. Dissolved gas concentrations exceeded atmospheric equilibrium values up to 700- and 16-fold, for CH4 and N2O, respectively. Mean concentrations were higher in the larger stream than in the smaller stream. In both streams, CH4 emissions were generally higher in summer-fall and negatively correlated with flow and NO3- concentration while N2O emissions were generally higher in winter/spring and positively correlated with flow and NO3-. In the small stream, diel variations in the concentrations, emissions, and isotopic compositions of CH4, N2O, and NO2- resulted from diel variations in sources, sinks, and air-water gas exchange velocities. Seasonal mean total (CH4 + N2O) area-normalized emission rates, expressed as CO2 warming potential equivalents, were similar for the two streams, but the total reach-scale emission rate for the larger stream, including CO2, was about 2.9 times that of the smaller stream (131.6 vs 46.0 kg CO2 equivalents km-1 day-1, respectively). The CH4 contribution to this flux was 9-28%, despite the relatively high NO3- and O2 concentrations in the streams, indicating contributions from upwelling groundwater or reactions in streambed sediment.

13.
Sci Total Environ ; 647: 369-378, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30086489

RESUMO

Coastal marine habitats become contaminated with the munitions constituent, Hexahydro-1,3,5-trinitro-1,3,5-trazine (RDX), via military training, weapon testing and leakage of unexploded ordnance. This study used 15N labeled RDX in simulated aquarium-scale coastal marine habitat containing seawater, sediment, and biota to track removal pathways from surface water including sorption onto particulates, degradation to nitroso-triazines and mineralization to dissolved inorganic nitrogen (DIN). The two aquaria received continuous RDX inputs to maintain a steady state concentration (0.4 mg L-1) over 21 days. Time series RDX and nitroso-triazine concentrations in dissolved (surface and porewater) and sorbed phases (sediment and suspended particulates) were analyzed. Distributions of DIN species (ammonium, nitrate + nitrite and dissolved N2) in sediments and overlying water were also measured along with geochemical variables in the aquaria. Partitioning of RDX and RDX-derived breakdown products onto surface sediment represented 13% of the total added 15N as RDX (15N-[RDX]) equivalents after 21 days. Measured nitroso-triazines in the aquaria accounted for 6-13% of total added 15N-[RDX]. 15N-labeled DIN was found both in the oxic surface water and hypoxic porewaters, showing that RDX mineralization accounted for 34% of the 15N-[RDX] added to the aquaria over 21 days. Labeled ammonium (15NH4+, found in sediment and overlying water) and nitrate + nitrite (15NOX, found in overlying water only) together represented 10% of the total added 15N-[RDX]. The production of 15N labeled N2 (15N2), accounted for the largest individual sink during the transformation of the total added 15N-[RDX] (25%). Hypoxic sediment was the most favorable zone for production of N2, most of which diffused through porous sediments into the water column and escaped to the atmosphere.

14.
Sci Total Environ ; 407(1): 324-32, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18835629

RESUMO

Septic tank systems are an important source of NO3(-) to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent delta15N-NH4+ values were almost constant and averaged +4.9 per thousand+/-0.4 per thousand (1 sigma). In contrast, delta15N values of NO3(-) leaving mature packed-bed filters were variable (+0.8 to +14.4 per thousand) and averaged +7.2 per thousand+/-2.6 per thousand. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl(-)-normalized N concentrations and 2-3 per thousand increases in delta15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3(-) in a local, shallow aquifer. Values of delta18O-NO3(-) leaving mature packed-bed filters ranged from -10.2 to -2.3 per thousand (mean -6.4 per thousand+/-1.8 per thousand), and were intermediate between a 2/3 H2O-O+1/3 O2-O conceptualization and a 100% H2O-O conceptualization of delta18O-NO3(-) generation during nitrification.


Assuntos
Filtração , Nitrogênio/análise , Dióxido de Silício , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Monitoramento Ambiental , Isótopos de Nitrogênio/análise , Oregon , Isótopos de Oxigênio/análise , Eliminação de Resíduos Líquidos/normas
15.
Water Res ; 141: 387-404, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29857319

RESUMO

This paper uses chemical and physical data from a large 2017 U.S. Geological Survey groundwater dataset with wells in the U.S. and three smaller international groundwater datasets with wells primarily in Australia and Spain to carry out a comprehensive investigation of brackish groundwater composition in relation to minimum desalination energy costs. First, we compute the site-specific least work required for groundwater desalination. Least work of separation represents a baseline for specific energy consumption of desalination systems. We develop simplified equations based on the U.S. data for least work as a function of water recovery ratio and a proxy variable for composition, either total dissolved solids, specific conductance, molality or ionic strength. We show that the U.S. correlations for total dissolved solids and molality may be applied to the international datasets. We find that total molality can be used to calculate the least work of dilute solutions with very high accuracy. Then, we examine the effects of groundwater solute composition on minimum energy requirements, showing that separation requirements increase from calcium to sodium for cations and from sulfate to bicarbonate to chloride for anions, for any given TDS concentration. We study the geographic distribution of least work, total dissolved solids, and major ions concentration across the U.S. We determine areas with both low least work and high water stress in order to highlight regions holding potential for desalination to decrease the disparity between high water demand and low water supply. Finally, we discuss the implications of the USGS results on water resource planning, by comparing least work to the specific energy consumption of brackish water reverse osmosis plants and showing the scaling propensity of major electrolytes and silica in the U.S. groundwater samples.


Assuntos
Conservação de Recursos Energéticos , Águas Salinas , Purificação da Água/métodos , Austrália , Água Subterrânea/química , Espanha , Sulfatos , Estados Unidos
16.
J Environ Qual ; 36(3): 664-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17412903

RESUMO

Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.


Assuntos
Nitratos/química , Água/química , Agricultura , Monitoramento Ambiental , Fertilizantes , Sedimentos Geológicos/análise , Maryland , Estações do Ano , Fatores de Tempo , Poluentes Químicos da Água/química , Poluição Química da Água/prevenção & controle
17.
Ground Water ; 55(2): 199-207, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27893932

RESUMO

Subsurface brines with high nitrate (NO3- ) concentration are common in desert environments as atmospheric nitrogen is concentrated by the evaporation of precipitation and little nitrogen uptake. However, in addition to having an elevated mean concentration of ∼525 mg/L (as N), NO3- in the coastal sabkhas of Abu Dhabi is enriched in 15 N (mean δ15 N ∼17‰), which is an enigma. A NO3- solute mass balance analysis of the sabkha aquifer system suggests that more than 90% of the nitrogen is from local atmospheric deposition and the remainder from ascending brine. In contrast, isotopic mass balances based on Δ17 O, δ15 N, and δ18 O data suggest approximately 80 to 90% of the NO3- could be from ascending brine. As the sabkha has essentially no soil, no vegetation, and no anthropogenic land or water use, we propose to resolve this apparent contradiction with a density-driven free-convection transport model. In this conceptual model, the density of rain is increased by solution of surface salts, transporting near-surface oxygenated NO3- bearing water downward where it encounters reducing conditions and mixes with oxygen-free ascending geologic brines. In this environment, NO3- is partially reduced to nitrogen gas (N2 ), thus enriching the remaining NO3- in heavy isotopes. The isotopically fractionated NO3- and nitrogen gas return to the near-surface oxidizing environment on the upward displacement leg of the free-convection cycle, where the nitrogen gas is released to the atmosphere and new NO3- is added to the system from atmospheric deposition. This recharge/recycling process has operated over many cycles in the 8000-year history of the shallow aquifer, progressively concentrating and isotopically fractionating the NO3- .


Assuntos
Monitoramento Ambiental , Água Subterrânea , Sais , Convecção , Nitratos , Nitrogênio , Isótopos de Nitrogênio , Poluentes Químicos da Água
18.
Sci Total Environ ; 595: 556-566, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28399495

RESUMO

Natural perchlorate (ClO4-) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4- may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4-, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4- in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4- was transported from solutions into plants similarly to NO3- but preferentially to Cl- (4-fold). The ClO4- isotopic compositions of initial ClO4- reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4- uptake or accumulation. The ClO4- isotopic composition of field-grown snap beans was also consistent with that of ClO4- in varying proportions from irrigation water and precipitation. NO3- uptake had little or no effect on NO3- isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3- in hydroponic solutions and leaf extracts, consistent with partial NO3- reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4- in commercial produce, as illustrated by spinach, for which the ClO4- isotopic composition was similar to that of indigenous natural ClO4-. Our results indicate that some types of plants can accumulate and (presumably) release ClO4- to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4- and NO3- in plants may be useful for determining sources of fertilizers and sources of ClO4- in their growth environments and consequently in food supplies.


Assuntos
Monitoramento Ambiental , Hidroponia , Nitratos/análise , Percloratos/análise , Phaseolus/metabolismo , Poluentes Químicos da Água/análise , Isótopos de Nitrogênio/análise
19.
Ecol Appl ; 16(6): 2064-90, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17205890

RESUMO

Denitrification is a critical process regulating the removal of bioavailable nitrogen (N) from natural and human-altered systems. While it has been extensively studied in terrestrial, freshwater, and marine systems, there has been limited communication among denitrification scientists working in these individual systems. Here, we compare rates of denitrification and controlling factors across a range of ecosystem types. We suggest that terrestrial, freshwater, and marine systems in which denitrification occurs can be organized along a continuum ranging from (1) those in which nitrification and denitrification are tightly coupled in space and time to (2) those in which nitrate production and denitrification are relatively decoupled. In aquatic ecosystems, N inputs influence denitrification rates whereas hydrology and geomorphology influence the proportion of N inputs that are denitrified. Relationships between denitrification and water residence time and N load are remarkably similar across lakes, river reaches, estuaries, and continental shelves. Spatially distributed global models of denitrification suggest that continental shelf sediments account for the largest portion (44%) of total global denitrification, followed by terrestrial soils (22%) and oceanic oxygen minimum zones (OMZs; 14%). Freshwater systems (groundwater, lakes, rivers) account for about 20% and estuaries 1% of total global denitrification. Denitrification of land-based N sources is distributed somewhat differently. Within watersheds, the amount of land-based N denitrified is generally highest in terrestrial soils, with progressively smaller amounts denitrified in groundwater, rivers, lakes and reservoirs, and estuaries. A number of regional exceptions to this general trend of decreasing denitrification in a downstream direction exist, including significant denitrification in continental shelves of N from terrestrial sources. Though terrestrial soils and groundwater are responsible for much denitrification at the watershed scale, per-area denitrification rates in soils and groundwater (kg N x km(-2) x yr(-1)) are, on average, approximately one-tenth the per-area rates of denitrification in lakes, rivers, estuaries, continental shelves, or OMZs. A number of potential approaches to increase denitrification on the landscape, and thus decrease N export to sensitive coastal systems exist. However, these have not generally been widely tested for their effectiveness at scales required to significantly reduce N export at the whole watershed scale.


Assuntos
Nitratos/metabolismo , Nitrogênio/metabolismo , Agricultura , Fertilizantes , Água Doce , Sedimentos Geológicos , Fixação de Nitrogênio , Oxigênio , Água do Mar , Solo
20.
Ecol Appl ; 16(6): 2091-122, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17205891

RESUMO

Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3-) and nitrite (NO2-), to the gases nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) 15N tracers, (3) direct N2 quantification, (4) N2:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.


Assuntos
Nitrogênio/análise , Acetileno , Argônio , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Óxidos de Nitrogênio/metabolismo , Solo/análise , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA