Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805219

RESUMO

Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.


Assuntos
Autofagia , Encéfalo/fisiopatologia , Mitocôndrias/metabolismo , Neurogênese , Animais , Diferenciação Celular , Proliferação de Células , Transtornos Cognitivos/terapia , Giro Denteado/metabolismo , Hipocampo/metabolismo , Humanos , Ventrículos Laterais/metabolismo , Lisossomos/metabolismo , Transtornos do Humor/terapia , Células-Tronco Neurais/citologia , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/citologia
2.
Biochem Biophys Res Commun ; 517(2): 376-382, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31362890

RESUMO

Mutations of PTEN-induced kinase 1 (PINK1) cause recessive familial Parkinson's disease. Cells lacking PINK1 display mitochondrial deficits and increased sensitivity to oxidative and proteasomal stress. It has been shown that the 52-kDa (mature) form of PINK1 in the cytoplasm mitigates proteasomal stress-induced cell death by enhancing aggresomes formation and autophagy. Here we newly demonstrate that proteasome dysfunction triggers mono-ubiquitination and nuclear translocation of mature PINK1. Enhancing PINK1 mono-ubiquitination by two different means increased nuclear accumulation of PINK1 independent of proteasome inhibition. Moreover, we show that PINK1 harbors a hitherto unknown nuclear export sequence (NES) in its C-terminus. Blocking CRM1-dependent nuclear export with leptomycin B augmented PINK1 levels in the nucleus of MG132-treated cells but not in normal cells. Overall, these results show that proteasomal stress-induced mono-ubiquitination of PINK1 mediates PINK1 nuclear translocation, while PINK1 is excluded from the nucleus of healthy cells via its NES. Therefore, mature PINK1 may have a nuclear function in cells under proteasomal stress.


Assuntos
Núcleo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular , Células HEK293 , Células HeLa , Humanos , Doença de Parkinson/metabolismo
3.
FASEB J ; 31(7): 2839-2853, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28325755

RESUMO

Emerging evidence suggests that mitochondrial dynamics regulates adult hippocampal neurogenesis (AHN). Although abnormal AHN has been linked to depression, anxiety, and cognitive dysfunction, which are features of neurodegenerative conditions, including Parkinson's disease (PD), the impact of mitochondrial deficits on AHN have not been explored previously in a model of neurodegeneration. Here, we used PTEN-induced kinase 1-deficient (PINK1-/- ) mice that lacked a mitochondrial kinase mutated in recessive familial PD. We show that mitochondrial defects, elevated glycolysis, and increased apoptosis are associated with impaired but not abrogated differentiation of PINK1-deficient neural stem cells (NSCs) in culture. In the dentate gyrus of PINK1-/- mice, newly generated doublecortin-positive neurons show aberrant dendritic morphology, and their maturation is compromised compared with wild-type mice. In addition, in vivo labeling of NSCs with 5-ethynyl-2'-deoxyuridine shows that proliferating NSC numbers are normal, but the differentiation of NSCs to doublecortin-positive neuroblasts and mature NeuN+ neurons is impeded in PINK1-/- mice. Finally, we demonstrate that home cage activity and corticosterone levels of PINK1-/- mice are normal, thereby excluding reduced physical activity and increased stress as causes of neurogenesis defects. Our results reveal a new and important relationship between mitochondrial dysfunction and impaired AHN in a genetic PD model. Targeting mitochondrial function and metabolism to increase AHN may hold promise for the treatment of affective disorders and the mitigation of related symptoms in PD and other neurodegenerative conditions.-Agnihotri, S. K., Shen, R., Li, J., Gao, X., Büeler, H. Loss of PINK1 leads to metabolic deficits in adult neural stem cells and impedes differentiation of newborn neurons in the mouse hippocampus.


Assuntos
Hipocampo/citologia , Células-Tronco Neurais/metabolismo , Proteínas Quinases/metabolismo , Animais , Comportamento Animal , Diferenciação Celular , Corticosterona/sangue , Feminino , Genótipo , Glicólise/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/fisiologia , Neurogênese/fisiologia , Proteínas Quinases/genética , Regulação para Cima
4.
J Neurochem ; 133(5): 750-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626353

RESUMO

Parkinson's disease (PD) is an age-related, neurodegenerative motor disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of α-synuclein-containing protein aggregates. Mutations in the mitochondrial Ser/Thr kinase PTEN-induced kinase 1 (PINK1) are associated with an autosomal recessive familial form of early-onset PD. Recent studies have suggested that PINK1 plays important neuroprotective roles against mitochondrial dysfunction by phosphorylating and recruiting Parkin, a cytosolic E3 ubiquitin ligase, to facilitate elimination of damaged mitochondria via autophagy-lysosomal pathways. Loss of PINK1 in cells and animals leads to various mitochondrial impairments and oxidative stress, culminating in dopaminergic neuronal death in humans. Using a 2-D polyacrylamide gel electrophoresis proteomics approach, the differences in expressed brain proteome and phosphoproteome between 6-month-old PINK1-deficient mice and wild-type mice were identified. The observed changes in the brain proteome and phosphoproteome of mice lacking PINK1 suggest that defects in signaling networks, energy metabolism, cellular proteostasis, and neuronal structure and plasticity are involved in the pathogenesis of familial PD. Mutations in PINK1 are associated with an early-onset form of Parkinson's disease (PD). This study examines changes in the proteome and phosphoproteome of the PINK1 knockout mouse brain. Alterations were noted in several key proteins associated with: increased oxidative stress, aberrant cellular signaling, altered neuronal structure, decreased synaptic plasticity, reduced neurotransmission, diminished proteostasis networks, and altered metabolism. 14-3-3ε, 14-3-3 protein epsilon; 3-PGDH, phosphoglycerate dehydrogenase; ALDOA, aldolase A; APT1, acyl-protein thioesterase 1; CaM, calmodulin; CBR3, carbonyl reductase [NADPH] 3; ENO2, gamma-enolase; HPRT, hypoxanthine-guanine phosphoribosyltransferase; HSP70, heat-shock-related 70 kDa protein 2; IDHc, cytoplasmic isocitrate dehydrogenase [NADP+]; MAPK1, mitogen-activated protein kinase 1; MEK1, MAP kinase kinase 1; MDHc, cytoplasmic malate dehydrogenase; NFM, neurofilament medium polypeptide; NSF, N-ethylmaleimide-sensitive fusion protein; PHB, prohibitin; PINK1, PTEN-induced putative kinase 1; PPIaseA, peptidyl-prolyl cis-trans isomerase A; PSA2, proteasome subunit alpha type-2; TK, transketolase; VDAC-2, voltage-dependent anion-selective channel protein 2.


Assuntos
Química Encefálica/genética , Doença de Parkinson/genética , Fosfoproteínas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Quinases/genética , Proteômica/métodos , Animais , Western Blotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Peptídeos/química , Proibitinas , Proteínas Quinases/química , Tripsina/química
5.
Eur J Immunol ; 43(12): 3355-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037540

RESUMO

Mutations in PTEN-induced kinase 1 (PINK1), a serine/threonine kinase linked to familial early-onset Parkinsonism, compromise mitochondrial integrity and metabolism and impair AKT signaling. As the activation of a naïve T cell requires an AKT-dependent reorganization of a cell's metabolic machinery, we sought to determine if PINK1-deficient T cells lack the ability to undergo activation and differentiation. We show that CD4(+) T cells from PINK1 knockout mice fail to properly phosphorylate AKT upon activation, resulting in reduced expression of the IL-2 receptor subunit CD25. Following, deficient IL-2 signaling mutes the activation-induced increase in respiratory capacity and mitochondrial membrane potential. Under polarization conditions favoring the development of induced regulatory T cells, PINK1(-/-) T cells exhibit a reduced ability to suppress bystander T-cell proliferation despite normal FoxP3 expression kinetics. Our results describe a critical role for PINK1 in integrating extracellular signals with metabolic state during T-cell fate determination, and may have implications for the understanding of altered T-cell populations and immunity during the progression of active Parkinson's disease or other immunopathologies.


Assuntos
Diferenciação Celular/imunologia , Citosol/imunologia , Ativação Linfocitária , Mitocôndrias/imunologia , Proteínas Quinases/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Interleucina-2/genética , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Linfócitos T Reguladores/patologia
6.
Neurodegener Dis ; 12(3): 136-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23295771

RESUMO

BACKGROUND: Mutations in PTEN-induced kinase 1 (PINK1) cause early-onset recessive parkinsonism. PINK1 and Parkin regulate mitochondrial quality control. However, PINK1 ablation in Drosophila and cultured mammalian cell lines affected mitochondrial function/dynamics in opposite ways, confounding the elucidation of the role of PINK1 in these processes. OBJECTIVE: We recently generated PINK1-deficient (PINK1-/-) mice and reasoned that primary cells from these mice provide a more physiological substrate to study the role of PINK1 in mammals and to investigate metabolic adaptations and neuron-specific vulnerability in PINK1 deficiency. METHODS AND RESULTS: Using real-time measurement of oxygen consumption and extracellular acidification, we show that basal mitochondrial respiration is increased, while maximum respiration and spare respiratory capacity are decreased in PINK1-/- mouse embryonic fibroblasts (MEF), as is the membrane potential. In addition, a Warburg-like effect in PINK1-/- MEF promotes survival that is abrogated by inhibition of glycolysis. Expression of uncoupling protein-2 is decreased in PINK1-/- MEF and the striatum of PINK1-/- mice, possibly increasing the sensitivity to oxidative stress. Mitochondria accumulate in large foci in PINK1-/- MEF, indicative of abnormal mitochondrial dynamics and/or transport. Like in PINK1-/- Drosophila, enlarged/swollen mitochondria accumulate in three different cell types from PINK1-/- mice (MEF, primary cortical neurons and embryonic stem cells). However, mitochondrial enlargement is greatest and most prominent in primary cortical neurons that also develop cristae fragmentation and disintegration. CONCLUSION: Our results reveal mechanisms of PINK1-related parkinsonism, show that the function of PINK1 is conserved between Drosophila and mammals when studied in primary cells, and demonstrate that the same PINK1 mutation can affect mitochondrial morphology/degeneration in a cell type-specific manner, suggesting that tissue-/cell-specific metabolic capacity and adaptations determine phenotypes and cellular vulnerability in PINK1-/- mice and cells.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Proteínas Quinases/genética , Adaptação Fisiológica , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Cultura Primária de Células
7.
Neurobiol Dis ; 45(1): 469-78, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21945539

RESUMO

Mutations in the PARK6 gene coding for PTEN-induced kinase 1 (PINK1) cause recessive early-onset Parkinsonism. Although PINK1 and Parkin promote the degradation of depolarized mitochondria in cultured cells, little is known about changes in signaling pathways that may additionally contribute to dopamine neuron loss in recessive Parkinsonism. Accumulating evidence implicates impaired Akt cell survival signaling in sporadic and familial PD (PD). IGF-1/Akt signaling inhibits dopamine neuron loss in several animal models of PD and both IGF-1 and insulin are neuroprotective in various settings. Here, we tested whether PINK1 is required for insulin-like growth factor 1 (IGF-1) and insulin dependent phosphorylation of Akt and the regulation of downstream Akt target proteins. Our results show that embryonic fibroblasts from PINK1-deficient mice display significantly reduced Akt phosphorylation in response to both IGF-1 and insulin. Moreover, phosphorylation of glycogen synthase kinase-3ß (GSK-3ß) and nuclear exclusion of FoxO1 are decreased in IGF-1 treated PINK1-deficient cells. In addition, phosphorylation of ribosomal protein S6 is reduced indicating decreased activity of mitochondrial target of rapamycin (mTOR) in IGF-1 treated PINK1(-/-) cells. Importantly, the protection afforded by IGF-1 against staurosporine-induced metabolic dysfunction and apoptosis is abrogated in PINK1-deficient cells. Moreover, IGF-1-induced Akt phosphorylation is impaired in primary cortical neurons from PINK1-deficient mice. Inhibition of cellular Ser/Thr phosphatases did not increase the amount of phosphorylated Akt in PINK1(-/-) cells, suggesting that components upstream of Akt phosphorylation are compromised in PINK1-deficient cells. Our studies show that PINK1 is required for optimal IGF-1 and insulin dependent Akt signal transduction, and raise the possibility that impaired IGF-1/Akt signaling is involved in PINK1-related Parkinsonism by increasing the vulnerability of dopaminergic neurons to stress-induced cell death.


Assuntos
Apoptose/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Insulina/metabolismo , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/fisiologia , Proteínas Quinases/genética , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
8.
Front Oncol ; 12: 893396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600352

RESUMO

Mitochondrial metabolism and dynamics (fission and fusion) critically regulate cell survival and proliferation, and abnormalities in these pathways are implicated in both neurodegenerative disorders and cancer. Mitochondrial fission is necessary for the growth of mutant Ras-dependent tumors. Here, we investigated whether loss of PTEN-induced kinase 1 (PINK1) - a mitochondrial kinase linked to recessive familial Parkinsonism - affects the growth of oncogenic Ras-induced tumor growth in vitro and in vivo. We show that RasG12D-transformed embryonic fibroblasts (MEFs) from PINK1-deficient mice display reduced growth in soft agar and in nude mice, as well as increased necrosis and decreased cell cycle progression, compared to RasG12D-transformed MEFs derived from wildtype mice. PINK1 re-expression (overexpression) at least partially rescues these phenotypes. Neither PINK1 deletion nor PINK1 overexpression altered Ras expression levels. Intriguingly, PINK1-deficient Ras-transformed MEFs exhibited elongated mitochondria and altered DRP1 phosphorylation, a key event in regulating mitochondrial fission. Inhibition of DRP1 diminished PINK1-regulated mitochondria morphological changes and tumor growth suggesting that PINK1 deficiency primarily inhibits Ras-driven tumor growth through disturbances in mitochondrial fission and associated cell necrosis and cell cycle defects. Moreover, we substantiate the requirement of PINK1 for optimal growth of Ras-transformed cells by showing that human HCT116 colon carcinoma cells (carrying an endogenous RasG13D mutation) with CRISPR/Cas9-introduced PINK1 gene deletions also show reduced mitochondrial fission and decreased growth. Our results support the importance of mitochondrial function and dynamics in regulating the growth of Ras-dependent tumor cells and provide insight into possible mechanisms underlying the lower incidence of cancers in Parkinson's disease and other neurodegenerative disorders.

9.
J Neurochem ; 112(6): 1513-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20050971

RESUMO

Previous studies have shown that the maintenance of post-mitotic state is critical for the life-long survival of the inner ear mechanosensory cells, the hair cells. A general concept is that differentiated, post-mitotic cells rapidly die following cell cycle re-entry. Here we have compared the response of postnatal cochlear (auditory) and utricular (balance) hair cells to forced cell cycle reactivation and p53 up-regulation. Forced S-phase entry was triggered through the human papillomavirus-16 E7 oncogene misexpression in explant cultures. It induced DNA damage and p53 induction in cochlear outer hair cells and these cells were rapidly lost, before entry into mitosis. The death was attenuated by p53 inactivation. In contrast, despite DNA damage and p53 induction, utricular hair cells showed longer term survival and a proportion of them progressed into mitosis. Consistently, pharmacological elevation of p53 levels by nutlin-3a led to a death-prone phenotype of cochlear outer hair cells, while other hair cell populations were death-resistant. These data have important clinical implications as they show the importance of p53 in sensory cells that are essential in hearing function.


Assuntos
Ciclo Celular/fisiologia , Orelha Interna/citologia , Mecanorreceptores/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/fisiologia , Adenoviridae/fisiologia , Animais , Animais Recém-Nascidos , Calbindinas , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Dano ao DNA/fisiologia , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Proteínas de Fluorescência Verde/genética , Imidazóis/farmacologia , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Piperazinas/farmacologia , Proteína G de Ligação ao Cálcio S100/genética , Proteína G de Ligação ao Cálcio S100/metabolismo , Fatores de Tempo , Proteína Supressora de Tumor p53/deficiência , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Tropismo Viral/genética , Tropismo Viral/fisiologia
10.
Neurobiol Dis ; 40(1): 82-92, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20483372

RESUMO

The mechanisms underlying neuron death in Parkinson's disease are unknown, but both genetic defects and environmental factors are implicated in its pathogenesis. Mutations in the parkin gene lead to autosomal recessive juvenile Parkinsonism (AR-JP). Here we report that compared to control flies, Drosophila lacking parkin show significantly reduced lifespan but no difference in dopamine neuron numbers when raised on food supplemented with environmental pesticides or mitochondrial toxins. Moreover, chelation of redox-active metals, anti-oxidants and overexpression of superoxide dismutase 1 all significantly reversed the reduced longevity of parkin-deficient flies. Finally, parkin deficiency exacerbated the rough eye phenotype of Drosophila caused by overexpression of the copper importer B (Ctr1B). Taken together, our results demonstrate an important function of parkin in the protection against redox-active metals and pesticides implicated in the etiology of Parkinson's disease. They also corroborate that oxidative stress, perhaps as a consequence of mitochondrial dysfunction, is a major determinant of morbidity in parkin mutant flies.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/deficiência , Drosophila melanogaster/genética , Longevidade/genética , Mutação/genética , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Animais , Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Longevidade/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
J Exp Med ; 196(6): 719-30, 2002 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-12235206

RESUMO

Recent work from many laboratories has demonstrated that the vascular endothelial growth factor-C/VEGF-D/VEGFR-3 signaling pathway is crucial for lymphangiogenesis, and that mutations of the Vegfr3 gene are associated with hereditary lymphedema. Furthermore, VEGF-C gene transfer to the skin of mice with lymphedema induced a regeneration of the cutaneous lymphatic vessel network. However, as is the case with VEGF, high levels of VEGF-C cause blood vessel growth and leakiness, resulting in tissue edema. To avoid these blood vascular side effects of VEGF-C, we constructed a viral vector for a VEGFR-3-specific mutant form of VEGF-C (VEGF-C156S) for lymphedema gene therapy. We demonstrate that VEGF-C156S potently induces lymphangiogenesis in transgenic mouse embryos, and when applied via viral gene transfer, in normal and lymphedema mice. Importantly, adenoviral VEGF-C156S lacked the blood vascular side effects of VEGF and VEGF-C adenoviruses. In particular, in the lymphedema mice functional cutaneous lymphatic vessels of normal caliber and morphology were detected after long-term expression of VEGF-C156S via an adeno associated virus. These results have important implications for the development of gene therapy for human lymphedema.


Assuntos
Fatores de Crescimento Endotelial/genética , Terapia Genética , Sistema Linfático/fisiologia , Neovascularização Fisiológica , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Fatores de Crescimento/fisiologia , Adenoviridae/genética , Animais , Dependovirus/genética , Sistema Linfático/embriologia , Linfedema/terapia , Camundongos , RNA Mensageiro/análise , Fator C de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular
12.
Apoptosis ; 15(11): 1336-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20131004

RESUMO

The structure and function of the mitochondrial network is regulated by mitochondrial biogenesis, fission, fusion, transport and degradation. A well-maintained balance of these processes (mitochondrial dynamics) is essential for neuronal signaling, plasticity and transmitter release. Core proteins of the mitochondrial dynamics machinery play important roles in the regulation of apoptosis, and mutations or abnormal expression of these factors are associated with inherited and age-dependent neurodegenerative disorders. In Parkinson's disease (PD), oxidative stress and mitochondrial dysfunction underlie the development of neuropathology. The recessive Parkinsonism-linked genes PTEN-induced kinase 1 (PINK1) and Parkin maintain mitochondrial integrity by regulating diverse aspects of mitochondrial function, including membrane potential, calcium homeostasis, cristae structure, respiratory activity, and mtDNA integrity. In addition, Parkin is crucial for autophagy-dependent clearance of dysfunctional mitochondria. In the absence of PINK1 or Parkin, cells often develop fragmented mitochondria. Whereas excessive fission may cause apoptosis, coordinated induction of fission and autophagy is believed to facilitate the removal of damaged mitochondria through mitophagy, and has been observed in some types of cells. Compensatory mechanisms may also occur in mice lacking PINK1 that, in contrast to cells and Drosophila, have only mild mitochondrial dysfunction and lack dopaminergic neuron loss. A better understanding of the relationship between the specific changes in mitochondrial dynamics/turnover and cell death will be instrumental to identify potentially neuroprotective pathways steering PINK1-deficient cells towards survival. Such pathways may be manipulated in the future by specific drugs to treat PD and perhaps other neurodegenerative disorders characterized by abnormal mitochondrial function and dynamics.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Doença de Parkinson/fisiopatologia , Animais , Humanos , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais
13.
Behav Brain Res ; 363: 161-172, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735759

RESUMO

Parkinson's disease (PD) is characterized by motor impairments and several non-motor features, including frequent depression and anxiety. Stress-induced deficits of adult hippocampal neurogenesis (AHN) have been linked with abnormal affective behavior in animals. It has been speculated that AHN defects may contribute to affective symptoms in PD, but this hypothesis remains insufficiently tested in animal models. Mice that lack the PD-linked kinase PINK1 show impaired differentiation of adult-born neurons in the hippocampus. Here, we examined the relationship between AHN deficits and affective behavior in PINK1-/- mice under basal (no stress) conditions and after exposure to chronic stress. PINK1 loss and corticosterone negatively and jointly affected AHN, leading to lower numbers of neural stem cells and newborn neurons in the dentate gyrus of corticosterone-treated PINK1-/- mice. Despite increased basal AHN deficits, PINK1-deficient mice showed normal affective behavior. However, lack of PINK1 sensitized mice to corticosterone-induced behavioral despair in the tail suspension test at a dose where wildtype mice were unaffected. Moreover, after two weeks of chronic restraint stress male PINK1-/- mice displayed increased immobility in the forced swim test, and protein expression of the glucocorticoid receptor in the hippocampus was reduced. Thus, while impaired AHN as such is insufficient to cause affective dysfunction in this PD model, PINK1 deficiency may lower the threshold for chronic stress-induced depression in PD. Finally, PINK1-deficient mice displayed reduced basal voluntary wheel running but normal rotarod performance, a finding whose mechanisms remain to be determined.


Assuntos
Depressão/fisiopatologia , Neurogênese/fisiologia , Proteínas Quinases/fisiologia , Animais , Ansiedade/fisiopatologia , Transtornos de Ansiedade/fisiopatologia , Comportamento Animal , Diferenciação Celular , Proliferação de Células , Corticosterona/metabolismo , Giro Denteado/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiologia , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Neurônios/metabolismo , Doença de Parkinson/fisiopatologia , Sistema Hipófise-Suprarrenal , Proteínas Quinases/genética , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Natação , Lobo Temporal/fisiopatologia
14.
Sci Rep ; 8(1): 383, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321620

RESUMO

Neuroinflammation is involved in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. We show that lack of PINK1- a mitochondrial kinase linked to recessive familial PD - leads to glia type-specific abnormalities of innate immunity. PINK1 loss enhances LPS/IFN-γ stimulated pro-inflammatory phenotypes of mixed astrocytes/microglia (increased iNOS, nitric oxide and COX-2, reduced IL-10) and pure astrocytes (increased iNOS, nitric oxide, TNF-α and IL-1ß), while attenuating expression of both pro-inflammatory (TNF-α, IL-1ß) and anti-inflammatory (IL-10) cytokines in microglia. These abnormalities are associated with increased inflammation-induced NF-κB signaling in astrocytes, and cause enhanced death of neurons co-cultured with inflamed PINK1 -/- mixed glia and neuroblastoma cells exposed to conditioned medium from LPS/IFN-γ treated PINK1 -/- mixed glia. Neuroblastoma cell death is prevented with an iNOS inhibitor, implicating increased nitric oxide production as the cause for enhanced death. Finally, we show for the first time that lack of a recessive PD gene (PINK1) increases α-Synuclein-induced nitric oxide production in all glia types (mixed glia, astrocytes and microglia). Our results describe a novel pathogenic mechanism in recessive PD, where PINK1 deficiency may increase neuron death via exacerbation of inflammatory stimuli-induced nitric oxide production and abnormal innate immune responses in glia cells.


Assuntos
Imunidade Inata , Neuroglia/imunologia , Neurônios/citologia , Óxido Nítrico/metabolismo , Proteínas Quinases/genética , Animais , Apoptose , Células Cultivadas , Citocinas/metabolismo , Técnicas de Inativação de Genes , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Neuroglia/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo
15.
FASEB J ; 16(9): 1041-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12087065

RESUMO

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are important regulators of blood and lymphatic vessel growth and vascular permeability. The VEGF-C/VEGFR-3 signaling pathway is crucial for lymphangiogenesis, and heterozygous inactivating missense mutations of the VEGFR-3 gene are associated with hereditary lymphedema. However, VEGF-C can have potent effects on blood vessels because its receptor VEGFR-3 is expressed in certain blood vessels and because the fully processed form of VEGF-C also binds to the VEGFR-2 of blood vessels. To characterize the in vivo effects of VEGF-C on blood and lymphatic vessels, we have overexpressed VEGF-C via adenovirus- and adeno-associated virus-mediated transfection in the skin and respiratory tract of athymic nude mice. This resulted in dose-dependent enlargement and tortuosity of veins, which, along with the collecting lymphatic vessels were found to express VEGFR-2. Expression of angiopoietin 1 blocked the increased leakiness of the blood vessels induced by VEGF-C whereas vessel enlargement and lymphangiogenesis were not affected. However, angiogenic sprouting of new blood vessels was not observed in response to AdVEGF-C or AAV-VEGF-C. These results show that virally produced VEGF-C induces blood vessel changes, including vascular leak, but its angiogenic potency is much reduced compared with VEGF in normal skin.


Assuntos
Adenoviridae/genética , Fatores de Crescimento Endotelial/genética , Neovascularização Fisiológica , Pele/irrigação sanguínea , Angiopoietina-1 , Animais , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Dependovirus/genética , Fatores de Crescimento Endotelial/metabolismo , Vetores Genéticos , Sistema Linfático/crescimento & desenvolvimento , Linfocinas/genética , Glicoproteínas de Membrana/farmacologia , Camundongos , Camundongos Nus , Mucosa Nasal/irrigação sanguínea , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular , Pele/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular , Fator C de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
16.
Int J Cardiol ; 90(2-3): 229-38, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12957756

RESUMO

Plasmid DNA and adenovirus vectors currently used in cardiovascular gene therapy trials are limited by low efficiency and short-lived transgene expression, respectively. Recombinant adeno-associated virus (AAV) has recently emerged as an attractive vector for cardiovascular gene therapy. In the present study, we have compared AAV and adenovirus vectors with respect to gene transfer efficiency and the duration of transgene expression in mouse hearts and arteries in vivo. AAV vectors (titer: 5 x 10(8) transducing units (TU)/ml) and adenovirus vectors (1.2 x 10(10) TU/ml) expressing a green fluorescent protein (EGFP) gene were injected either intramyocardially (n=32) or intrapericardially (n=3) in CD-1 mice. Hearts were harvested at varying time intervals (3 days to 1 year) after gene delivery. After intramyocardial injection of 5 microl virus stock solution, cardiomyocyte transduction rates with AAV vectors were 4-fold lower than with adenovirus vectors (1.5% (range: 0.5-2.6%) vs. 6.2% (range: 2.7-13.7%); P<0.05), but similar to titer-matched adenovirus vectors (0.7%; range: 0.2-1.2%). AAV-mediated EGFP expression lasted for at least 1 year. AAV vectors instilled into the pericardial space transduced epicardial myocytes. Arterial gene transfer was studied in mouse carotids (n=26). Both vectors selectively transduced endothelial cells after luminal instillation. Transduction rates with AAV vectors were 8-fold lower than with adenovirus vectors (2.0% (range: 0-3.2%) vs. 16.2% (range: 8.5-20.2%); P<0.05). Prolonged EGFP expression was observed after AAV but not adenovirus-mediated gene transfer. In conclusion, AAV vectors deliver and express genes for extended periods of time in the myocardium and arterial endothelium in vivo. AAV vectors may be useful for gene therapy approaches to chronic cardiovascular diseases.


Assuntos
Adenoviridae , Vasos Coronários , Dependovirus , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Miocárdio , Transgenes/genética , Adenoviridae/genética , Animais , Células Cultivadas , Dependovirus/genética , Terapia Genética , Camundongos , Estatísticas não Paramétricas , Transdução Genética/métodos
17.
PLoS One ; 9(4): e94826, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24733019

RESUMO

Parkinson's disease (PD) is one of the most prevalent neurodegenerative brain diseases; it is accompanied by extensive loss of dopamine (DA) neurons of the substantia nigra that project to the putamen, leading to impaired motor functions. Several genes have been associated with hereditary forms of the disease and transgenic mice have been developed by a number of groups to produce animal models of PD and to explore the basic functions of these genes. Surprisingly, most of the various mouse lines generated such as Parkin KO, Pink1 KO, DJ-1 KO and LRRK2 transgenic have been reported to lack degeneration of nigral DA neuron, one of the hallmarks of PD. However, modest impairments of motor behavior have been reported, suggesting the possibility that the models recapitulate at least some of the early stages of PD, including early dysfunction of DA axon terminals. To further evaluate this possibility, here we provide for the first time a systematic comparison of DA release in four different mouse lines, examined at a young age range, prior to potential age-dependent compensations. Using fast scan cyclic voltammetry in striatal sections prepared from young, 6-8 weeks old mice, we examined sub-second DA overflow evoked by single pulses and action potential trains. Unexpectedly, none of the models displayed any dysfunction of DA overflow or reuptake. These results, compatible with the lack of DA neuron loss in these models, suggest that molecular dysfunctions caused by the absence or mutation of these individual genes are not sufficient to perturb the function and survival of mouse DA neurons.


Assuntos
Dopamina/metabolismo , Mutação/genética , Proteínas Oncogênicas/deficiência , Peroxirredoxinas/deficiência , Proteínas Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/deficiência , Animais , Técnicas Eletroquímicas , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Camundongos Knockout , Neostriado , Proteínas Oncogênicas/metabolismo , Peroxirredoxinas/metabolismo , Proteína Desglicase DJ-1 , Proteínas Quinases/metabolismo , Transmissão Sináptica , Ubiquitina-Proteína Ligases/metabolismo
18.
Methods Mol Biol ; 1162: 189-207, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24838969

RESUMO

Recombinant adeno-associated viral (AAV) vectors are one of the most promising therapeutic delivery systems for gene therapy to the central nervous system (CNS). Preclinical testing of novel gene therapies requires the careful design and production of AAV vectors and their successful application in a model of CNS injury. One major limitation of AAV vectors is their limited packaging capacity (<5 kb) making the co-expression of two genes (e.g., from two promoters) difficult. An internal ribosomal entry site has been used to express two genes: However, the second transgene is often expressed at lower levels than the first. In addition to this, achieving high levels of transduction in the CNS can be challenging. In this chapter we describe the cloning of a bicistronic AAV vector that uses the foot-and-mouth disease virus 2A sequence to efficiently express two genes from a single promoter. Bicistronic expression of a therapeutic gene and a reporter gene is desirable so that the axons from transduced neurons can be tracked and, after CNS injury, the amount of axonal sprouting or regeneration quantified. We go on to describe how to perform a pyramidotomy model of CNS injury and the injection of AAV vectors into the sensorimotor cortex to provide efficient transduction and bicistronic gene expression in cortical neurons such that transduced axons are detectable in the dorsal columns of the spinal cord.


Assuntos
Sistema Nervoso Central/lesões , Dependovirus/genética , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/uso terapêutico , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Clonagem Molecular/métodos , Eletroporação/métodos , Feminino , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Histocitoquímica/métodos , Injeções , Microscopia/métodos , Dados de Sequência Molecular , Regeneração Nervosa , Reação em Cadeia da Polimerase/métodos
20.
Cell Metab ; 17(5): 685-94, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23663737

RESUMO

Classic cardio-metabolic risk factors such as hypertension, stroke, diabetes, and hypercholesterolemia all increase the risk of Alzheimer's disease. We found increased transcription of ß-secretase/BACE1, the rate-limiting enzyme for Aß generation, in eNOS-deficient mouse brains and after feeding mice a high-fat, high-cholesterol diet. Up- or downregulation of PGC-1α reciprocally regulated BACE1 in vitro and in vivo. Modest fasting in mice reduced BACE1 transcription in the brains, which was accompanied by elevated PGC-1 expression and activity. Moreover, the suppressive effect of PGC-1 was dependent on activated PPARγ, likely via SIRT1-mediated deacetylation in a ligand-independent manner. The BACE1 promoter contains multiple PPAR-RXR sites, and direct interactions among SIRT1-PPARγ-PGC-1 at these sites were enhanced with fasting. The interference on the BACE1 gene identified here represents a unique noncanonical mechanism of PPARγ-PGC-1 in transcriptional repression in neurons in response to metabolic signals that may involve recruitment of corepressor NCoR.


Assuntos
Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Neurônios/metabolismo , PPAR gama/genética , Sirtuína 1/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Acetilação , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/biossíntese , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , Ratos , Sirtuína 1/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA