Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(8): 2993-3007, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435459

RESUMO

Fungal dye-decolorizing peroxidases (DyPs) have found applications in the treatment of dye-contaminated industrial wastes or to improve biomass digestibility. Their roles in fungal biology are uncertain, although it has been repeatedly suggested that they could participate in lignin degradation and/or modification. Using a comprehensive set of 162 fully sequenced fungal species, we defined seven distinct fungal DyP clades on basis of a sequence similarity network. Sequences from one of these clades clearly diverged from all others, having on average the lower isoelectric points and hydropathy indices, the highest number of N-glycosylation sites, and N-terminal sequence peptides for secretion. Putative proteins from this clade are absent from brown-rot and ectomycorrhizal species that have lost the capability of degrading lignin enzymatically. They are almost exclusively present in white-rot and other saprotrophic Basidiomycota that digest lignin enzymatically, thus lending support for a specific role of DyPs from this clade in biochemical lignin modification. Additional nearly full-length fungal DyP genes were isolated from the environment by sequence capture by hybridization; they all belonged to the clade of the presumably secreted DyPs and to another related clade. We suggest focusing our attention on the presumably intracellular DyPs from the other clades, which have not been characterized thus far and could represent enzyme proteins with novel catalytic properties. KEY POINTS: • A fungal DyP phylogeny delineates seven main sequence clades. • Putative extracellular DyPs form a single clade of Basidiomycota sequences. • Extracellular DyPs are associated to white-rot fungi.


Assuntos
Basidiomycota , Peroxidase , Basidiomycota/metabolismo , Corantes/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Peroxidase/química , Peroxidase/genética , Peroxidases/genética , Peroxidases/metabolismo
2.
Arch Biochem Biophys ; 574: 86-92, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25796533

RESUMO

Substantial conversion of nitrophenols, typical high-redox potential phenolic substrates, by heme peroxidases has only been reported for lignin peroxidase (LiP) so far. But also a dye-decolorizing peroxidase of Auricularia auricula-judae (AauDyP) was found to be capable of acting on (i) ortho-nitrophenol (oNP), (ii) meta-nitrophenol (mNP) and (iii) para-nitrophenol (pNP). The pH dependency for pNP oxidation showed an optimum at pH 4.5, which is typical for phenol conversion by DyPs and other heme peroxidases. In the case of oNP and pNP conversion, dinitrophenols (2,4-DNP and 2,6-DNP) were identified as products and for pNP additionally p-benzoquinone. Moreover, indications were found for the formation of random polymerization products originating from initially formed phenoxy radical intermediates. Nitration was examined using (15)N-labeled pNP and Na(14)NO2 as an additional source of nitro-groups. Products were identified by HPLC-MS, and mass-to-charge ratios were evaluated to clarify the origin of nitro-groups. The additional nitrogen in DNPs formed during enzymatic conversion was found to originate both from (15)N-pNP and (14)NO2Na. Based on these results, a hypothetical reaction scheme and a catalytically responsible confine of the enzyme's active site are postulated.


Assuntos
Nitratos/metabolismo , Nitrofenóis/metabolismo , Peroxidases/metabolismo , Cor , Corantes/metabolismo , Simulação de Acoplamento Molecular , Oxirredução , Peroxidases/química
3.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414316

RESUMO

Xylaria grammica is an ascomycetous decomposer of dead hardwood. The X. grammica strain IHIA82 was recovered from the Kakamega Forest in Kenya. The whole genome of this strain was sequenced with a total size of 47.0 Mbp, a G+C content of 48.1%, and 12,126 predicted genes.

4.
Biomolecules ; 11(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572604

RESUMO

BACKGROUND: Fungal DyP-type peroxidases have so far been described exclusively for basidiomycetes. Moreover, peroxidases from ascomycetes that oxidize Mn2+ ions are yet not known. METHODS: We describe here the physicochemical, biocatalytic, and molecular characterization of a DyP-type peroxidase (DyP, EC 1.11.1.19) from an ascomycetous fungus. RESULTS: The enzyme oxidizes classic peroxidase substrates such as 2,6-DMP but also veratryl alcohol and notably Mn2+ to Mn3+ ions, suggesting a physiological function of this DyP in lignin modification. The KM value (49 µM) indicates that Mn2+ ions bind with high affinity to the XgrDyP protein but their subsequent oxidation into reactive Mn3+ proceeds with moderate efficiency compared to MnPs and VPs. Mn2+ oxidation was most effective at an acidic pH (between 4.0 and 5.0) and a hypothetical surface exposed an Mn2+ binding site comprising three acidic amino acids (two aspartates and one glutamate) could be localized within the hypothetical XgrDyP structure. The oxidation of Mn2+ ions is seemingly supported by four aromatic amino acids that mediate an electron transfer from the surface to the heme center. CONCLUSIONS: Our findings shed new light on the possible involvement of DyP-type peroxidases in lignocellulose degradation, especially by fungi that lack prototypical ligninolytic class II peroxidases.


Assuntos
Ascomicetos/enzimologia , Corantes/metabolismo , Peroxidases/metabolismo , Sítios de Ligação , Cor , Corantes/isolamento & purificação , Espaço Extracelular/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Funções Verossimilhança , Manganês/metabolismo , Modelos Moleculares , Oxirredução , Peroxidases/química , Peroxidases/isolamento & purificação , Filogenia , Espectrofotometria Ultravioleta , Fatores de Tempo
5.
Microbiol Resour Announc ; 9(15)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273365

RESUMO

Xylaria multiplex is an ascomycete fungus that causes soft rot and is often associated with wood. Here, we report a draft genome sequence with an assembly size of 45.6 Mbp, a G+C content of 46.9%, and 10,964 predicted genes, including 617 that encode carbohydrate-active enzymes (CAZymes).

6.
Microbiol Resour Announc ; 8(12)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30938703

RESUMO

The saprotrophic soft-rot fungus Xylaria longipes was isolated from deadwood of Acer pseudoplatanus collected in the Bavarian Forest, Germany. The whole genome of this strain (DSM 107183) was sequenced with a total size of 43.2 Mb and a G+C content of 48.5%. The genome comprises 12,638 predicted coding sequences.

7.
Microbiol Resour Announc ; 8(44)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672741

RESUMO

The saprotrophic ascomycete Xylaria hypoxylon is a widespread wood-decaying fungus on deciduous trees. Here, we report its draft genome sequence. The genome assembly has a size of 42.8 Mbp and a G+C content of 47.1% and includes 11,038 predicted genes.

8.
Microbiol Resour Announc ; 8(17)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023795

RESUMO

Chlorociboria aeruginascens DSM 107184 is a wood-decomposing ascomycetous fungus known to produce the bluish-green dimeric naphthoquinone derivate xylindein. Here, we present the first draft genome sequence, which contains 588 contigs with a total length of 33.1 Mb. Altogether, 8,648 protein-coding genes were predicted.

9.
Artigo em Inglês | MEDLINE | ID: mdl-30533718

RESUMO

Scytalidium lignicola is a ubiquitous anamorphic ascomycete and belongs to a genus that includes several phytopathogenic fungi. The strain sequenced in this study (DSM 105466) was isolated from leaves of Quercus robur. The draft genome has a size of 47.7 Mb and contains 12,795 protein-coding genes.

10.
Genome Announc ; 6(7)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449401

RESUMO

Lecythophora (Coniochaeta) hoffmannii, a soil- and lignocellulose-inhabiting sordariomycete (Ascomycota) that can also live as a facultative tree pathogen causing soft rot, belongs to the family Coniochaetaceae. The strain CBS 245.38 sequenced here was assembled into 869 contigs, has a size of 30.8 Mb, and comprises 10,596 predicted protein-coding genes.

11.
Genome Announc ; 5(43)2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074647

RESUMO

We report here the draft genome of Kretzschmaria (Ustulina) deusta, an ascomycetous fungus that colonizes and substantially degrades hardwood and can infest living broad-leaved trees. The genome was assembled into 858 contigs, with a total size of 46.5 Mb, and 11,074 protein-coding genes were predicted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA