Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Pathog ; 18(9): e1010819, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121875

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. METHODS AND FINDINGS: In this study, we compared COVID-19 ARDS (n = 43) and bacterial sepsis-induced (non-COVID-19) ARDS (n = 24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. CONCLUSION: We present a first comprehensive molecular characterization of differences between two ARDS etiologies-COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.


Assuntos
Injúria Renal Aguda , COVID-19 , Inibidores de Janus Quinases , Síndrome do Desconforto Respiratório , Sepse , Trombocitose , Arginina , COVID-19/complicações , Humanos , Interleucina-17 , Lipídeos , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , Esfingosina
2.
Mol Med ; 29(1): 13, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703108

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles. RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Humanos , COVID-19/complicações , Proteômica , Multiômica , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , Inflamação
3.
Bioinformatics ; 38(2): 573-576, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34529048

RESUMO

SUMMARY: The 'Subgroup Identification' (SGI) toolbox provides an algorithm to automatically detect clinical subgroups of samples in large-scale omics datasets. It is based on hierarchical clustering trees in combination with a specifically designed association testing and visualization framework that can process an arbitrary number of clinical parameters and outcomes in a systematic fashion. A multi-block extension allows for the simultaneous use of multiple omics datasets on the same samples. In this article, we first describe the functionality of the toolbox and then demonstrate its capabilities through application examples on a type 2 diabetes metabolomics study as well as two copy number variation datasets from The Cancer Genome Atlas. AVAILABILITY AND IMPLEMENTATION: SGI is an open-source package implemented in R. Package source codes and hands-on tutorials are available at https://github.com/krumsieklab/sgi. The QMdiab metabolomics data is included in the package and can be downloaded from https://doi.org/10.6084/m9.figshare.5904022. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Variações do Número de Cópias de DNA , Diabetes Mellitus Tipo 2 , Humanos , Software , Algoritmos , Metabolômica
4.
Bioinformatics ; 38(4): 1168-1170, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34694386

RESUMO

This article presents maplet, an open-source R package for the creation of highly customizable, fully reproducible statistical pipelines for metabolomics data analysis. It builds on the SummarizedExperiment data structure to create a centralized pipeline framework for storing data, analysis steps, results and visualizations. maplet's key design feature is its modularity, which offers several advantages, such as ensuring code quality through the maintenance of individual functions and promoting collaborative development by removing technical barriers to code contribution. With over 90 functions, the package includes a wide range of functionalities, covering many widely used statistical approaches and data visualization techniques. AVAILABILITY AND IMPLEMENTATION: The maplet package is implemented in R and freely available at https://github.com/krumsieklab/maplet.


Assuntos
Metabolômica , Software , Análise de Dados , Visualização de Dados
5.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35469796

RESUMO

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Assuntos
Angiopoietina-2 , COVID-19 , Necroptose , Síndrome do Desconforto Respiratório , Angiopoietina-2/metabolismo , COVID-19/complicações , Humanos , Proteômica , Síndrome do Desconforto Respiratório/virologia
6.
Genet Epidemiol ; 45(6): 633-650, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34082474

RESUMO

It is still unclear how genetic information, provided as single-nucleotide polymorphisms (SNPs), can be most effectively integrated into risk prediction models for coronary heart disease (CHD) to add significant predictive value beyond clinical risk models. For the present study, a population-based case-cohort was used as a trainingset (451 incident cases, 1488 noncases) and an independent cohort as testset (160 incident cases, 2749 noncases). The following strategies to quantify genetic information were compared: A weighted genetic risk score including Metabochip SNPs associated with CHD in the literature (GRSMetabo ); selection of the most predictive SNPs among these literature-confirmed variants using priority-Lasso (PLMetabo ); validation of two comprehensive polygenic risk scores: GRSGola based on Metabochip data, and GRSKhera (available in the testset only) based on cross-validated genome-wide genotyping data. We used Cox regression to assess associations with incident CHD. C-index, category-free net reclassification index (cfNRI) and relative integrated discrimination improvement (IDIrel ) were used to quantify the predictive performance of genetic information beyond Framingham risk score variables. In contrast to GRSMetabo and PLMetabo , GRSGola significantly improved the prediction (delta C-index [95% confidence interval]: 0.0087 [0.0044, 0.0130]; IDIrel : 0.0509 [0.0131, 0.0894]; cfNRI improved only in cases: 0.1761 [0.0253, 0.3219]). GRSKhera yielded slightly worse prediction results than GRSGola .


Assuntos
Doença das Coronárias , Modelos Genéticos , Estudos de Coortes , Doença das Coronárias/diagnóstico , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Humanos , Polimorfismo de Nucleotídeo Único , Medição de Risco , Fatores de Risco
7.
Thorax ; 77(2): 186-190, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34521729

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with unclear aetiology and poorly understood pathophysiology. Although plasma levels of circulating cell-free DNA (ccf-DNA) and metabolomic changes have been reported in IPF, the associations between ccf-DNA levels and metabolic derangements in lung fibrosis are unclear. Here, we demonstrate that ccf-double-stranded DNA (dsDNA) is increased in patients with IPF with rapid progression of disease compared with slow progressors and healthy controls and that ccf-dsDNA associates with amino acid metabolism, energy metabolism and lipid metabolism pathways in patients with IPF.


Assuntos
Ácidos Nucleicos Livres , Fibrose Pulmonar Idiopática , DNA , Progressão da Doença , Humanos , Metabolômica
8.
PLoS Comput Biol ; 17(5): e1008998, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34038408

RESUMO

Changes in protein and gene expression levels are often used as features in predictive modeling such as survival prediction. A common strategy to aggregate information contained in individual proteins is to integrate the expression levels with the biological networks. In this work, we propose a novel patient representation where we integrate proteins' expression levels with the protein-protein interaction (PPI) networks: Patient representation with PRER (Pairwise Relative Expressions with Random walks). PRER captures the dysregulation patterns of proteins based on the neighborhood of a protein in the PPI network. Specifically, PRER computes a feature vector for a patient by comparing the source protein's expression level with other proteins' levels that are within its neighborhood. The neighborhood of the source protein is derived by biased random-walk strategy on the network. We test PRER's performance in survival prediction task in 10 different cancers using random forest survival models. PRER yields a statistically significant predictive performance in 9 out of 10 cancers when compared to the same model trained with features based on individual protein expressions. Furthermore, we identified the pairs of proteins that their interactions are predictive of patient survival but their individual expression levels are not. The set of identified relations provides a valuable collection of protein biomarkers with high prognostic value. PRER can be used for other complex diseases and prediction tasks that use molecular expression profiles as input. PRER is freely available at: https://github.com/hikuru/PRER.


Assuntos
Biologia Computacional/métodos , Proteínas/metabolismo , Biomarcadores/metabolismo , Prognóstico , Mapas de Interação de Proteínas
9.
medRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38313266

RESUMO

Impaired glucose uptake in the brain is one of the earliest presymptomatic manifestations of Alzheimer's disease (AD). The absence of symptoms for extended periods of time suggests that compensatory metabolic mechanisms can provide resilience. Here, we introduce the concept of a systemic 'bioenergetic capacity' as the innate ability to maintain energy homeostasis under pathological conditions, potentially serving as such a compensatory mechanism. We argue that fasting blood acylcarnitine profiles provide an approximate peripheral measure for this capacity that mirrors bioenergetic dysregulation in the brain. Using unsupervised subgroup identification, we show that fasting serum acylcarnitine profiles of participants from the AD Neuroimaging Initiative yields bioenergetically distinct subgroups with significant differences in AD biomarker profiles and cognitive function. To assess the potential clinical relevance of this finding, we examined factors that may offer diagnostic and therapeutic opportunities. First, we identified a genotype affecting the bioenergetic capacity which was linked to succinylcarnitine metabolism and significantly modulated the rate of future cognitive decline. Second, a potentially modifiable influence of beta-oxidation efficiency seemed to decelerate bioenergetic aging and disease progression. Our findings, which are supported by data from more than 9,000 individuals, suggest that interventions tailored to enhance energetic health and to slow bioenergetic aging could mitigate the risk of symptomatic AD, especially in individuals with specific mitochondrial genotypes.

10.
Metabolites ; 13(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677052

RESUMO

High-dimensional omics datasets frequently contain missing data points, which typically occur due to concentrations below the limit of detection (LOD) of the profiling platform. The presence of such missing values significantly limits downstream statistical analysis and result interpretation. Two common techniques to deal with this issue include the removal of samples with missing values and imputation approaches that substitute the missing measurements with reasonable estimates. Both approaches, however, suffer from various shortcomings and pitfalls. In this paper, we present "rox", a novel statistical model for the analysis of omics data with missing values without the need for imputation. The model directly incorporates missing values as "low" concentrations into the calculation. We show the superiority of rox over common approaches on simulated data and on six metabolomics datasets. Fully leveraging the information contained in LOD-based missing values, rox provides a powerful tool for the statistical analysis of omics data.

11.
Nat Metab ; 5(6): 1029-1044, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37337120

RESUMO

Tumour metabolism is controlled by coordinated changes in metabolite abundance and gene expression, but simultaneous quantification of metabolites and transcripts in primary tissue is rare. To overcome this limitation and to study gene-metabolite covariation in cancer, we assemble the Cancer Atlas of Metabolic Profiles of metabolomic and transcriptomic data from 988 tumour and control specimens spanning 11 cancer types in published and newly generated datasets. Meta-analysis of the Cancer Atlas of Metabolic Profiles reveals two classes of gene-metabolite covariation that transcend cancer types. The first corresponds to gene-metabolite pairs engaged in direct enzyme-substrate interactions, identifying putative genes controlling metabolite pool sizes. A second class of gene-metabolite covariation represents a small number of hub metabolites, including quinolinate and nicotinamide adenine dinucleotide, which correlate to many genes specifically expressed in immune cell populations. These results provide evidence that gene-metabolite covariation in cellularly heterogeneous tissue arises, in part, from both mechanistic interactions between genes and metabolites, and from remodelling of the bulk metabolome in specific immune microenvironments.


Assuntos
Metabolômica , Neoplasias , Humanos , Metabolômica/métodos , Metaboloma , Neoplasias/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Microambiente Tumoral
12.
medRxiv ; 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35982655

RESUMO

Background: Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. Methods and Findings: In this study, we compared COVID-19 ARDS (n=43) and bacterial sepsis-induced (non-COVID-19) ARDS (n=24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within-ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. Conclusion: We present a first comprehensive molecular characterization of differences between two ARDS etiologies - COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.

13.
medRxiv ; 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35982662

RESUMO

Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. In this study, we performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). The comparison of these ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.

14.
iScience ; 25(7): 104612, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35756895

RESUMO

The coronavirus disease-19 (COVID-19) pandemic has ravaged global healthcare with previously unseen levels of morbidity and mortality. In this study, we performed large-scale integrative multi-omics analyses of serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic complexities of this disease and identifying molecular signatures that predict clinical outcomes. We assembled a network of protein-metabolite interactions through targeted metabolomic and proteomic profiling in 330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network identified distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our data linked multiple proteins and metabolites to clinical indices associated with long-term mortality and morbidity. Finally, we developed a novel composite outcome measure for COVID-19 disease severity based on metabolomics data. The model predicts severe disease with a concordance index of around 0.69, and shows high predictive power of 0.83-0.93 in two independent datasets.

15.
J Clin Neurophysiol ; 38(6): 516-524, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32398513

RESUMO

PURPOSE: Status epilepticus (SE) is a commonly encountered neurologic condition associated with high mortality rates. Cyclic seizures (CS) are a common form of SE, but its prognostic significance has not been well established. In this retrospective study, the mortality of cyclic versus noncyclic forms (NCSs) of SE are compared. METHODS: A total of 271 patients were identified as having seizures or SE on EEG reports, of which 65 patients were confirmed as having SE. Based on EEG characteristics, the patients were then classified as cyclic or noncyclic patterns. Cyclic seizures were defined as recurrent seizures occurring at nearly regular and uniform intervals. Noncyclic form included all other patterns of SE. Pertinent clinical data were collected and reviewed for each case. RESULTS: Of the 65 patients with SE, 25 patients had CS and 40 patients had NCS. Patients with CS showed a lower rate of in-hospital mortality although not statistically significant (P = 0.19). When looking at patients younger than 75 years, the CS group had significantly lower in-hospital mortality rate (P = 0.007). CONCLUSIONS: The findings of this study suggest that CS may have a more favorable outcome compared with NCS in patients younger than 75 years. This study is also the first to report the rate of CS among all cases of confirmed SE (38%). Future studies with a larger sample size are needed to further evaluate the difference in outcome between CS and NCS.


Assuntos
Estado Epiléptico , Eletroencefalografia , Humanos , Prognóstico , Estudos Retrospectivos , Convulsões/diagnóstico , Estado Epiléptico/diagnóstico
16.
J Clin Endocrinol Metab ; 106(4): e1647-e1659, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33382400

RESUMO

CONTEXT: Improved strategies to identify persons at high risk of type 2 diabetes are important to target costly preventive efforts to those who will benefit most. OBJECTIVE: This work aimed to assess whether novel biomarkers improve the prediction of type 2 diabetes beyond noninvasive standard clinical risk factors alone or in combination with glycated hemoglobin A1c (HbA1c). METHODS: We used a population-based case-cohort study for discovery (689 incident cases and 1850 noncases) and an independent cohort study (262 incident cases, 2549 noncases) for validation. An L1-penalized (lasso) Cox model was used to select the most predictive set among 47 serum biomarkers from multiple etiological pathways. All variables available from the noninvasive German Diabetes Risk Score (GDRSadapted) were forced into the models. The C index and the category-free net reclassification index (cfNRI) were used to evaluate the predictive performance of the selected biomarkers beyond the GDRSadapted model (plus HbA1c). RESULTS: Interleukin-1 receptor antagonist, insulin-like growth factor binding protein 2, soluble E-selectin, decorin, adiponectin, and high-density lipoprotein cholesterol were selected as the most relevant biomarkers. The simultaneous addition of these 6 biomarkers significantly improved the predictive performance both in the discovery (C index [95% CI], 0.053 [0.039-0.066]; cfNRI [95% CI], 67.4% [57.3%-79.5%]) and the validation study (0.034 [0.019-0.053]; 48.4% [35.6%-60.8%]). Significant improvements by these biomarkers were also seen on top of the GDRSadapted model plus HbA1c in both studies. CONCLUSION: The addition of 6 biomarkers significantly improved the prediction of type 2 diabetes when added to a noninvasive clinical model or to a clinical model plus HbA1c.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Cancer Res ; 81(9): 2275-2288, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526512

RESUMO

Serine is a nonessential amino acid generated by the sequential actions of phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT1), and phosphoserine phosphatase (PSPH). Increased serine biosynthesis occurs in several cancers and supports tumor growth. In addition, cancer cells can harness exogenous serine to enhance their metabolism and proliferation. Here we tested the relative contributions of exogenous and endogenous sources of serine on the biology of colorectal cancer. In murine tumors, Apc status was identified as a determinant of the expression of genes controlling serine synthesis. In patient samples, PSAT1 was overexpressed in both colorectal adenomas and adenocarcinomas. Combining genetic deletion of PSAT1 with exogenous serine deprivation maximally suppressed the proliferation of colorectal cancer cells and induced profound metabolic defects including diminished nucleotide production. Inhibition of serine synthesis enhanced the transcriptional changes following exogenous serine removal as well as alterations associated with DNA damage. Both loss of PSAT1 and removal of serine from the diet were necessary to suppress colorectal cancer xenograft growth and enhance the antitumor activity of 5-fluorouracil (5-FU). Restricting endogenous and exogenous serine in vitro augmented 5-FU-induced cell death, DNA damage, and metabolic perturbations, likely accounting for the observed antitumor effect. Collectively, our results suggest that both endogenous and exogenous sources of serine contribute to colorectal cancer growth and resistance to 5-FU. SIGNIFICANCE: These findings provide insights into the metabolic requirements of colorectal cancer and reveal a novel approach for its treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2275/F1.large.jpg.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Neoplasias do Colo/dietoterapia , Neoplasias do Colo/metabolismo , Dieta/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/administração & dosagem , Serina/deficiência , Idoso , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Pessoa de Meia-Idade , Gravidez , Serina/genética , Transaminases/deficiência , Transaminases/genética , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Nat Commun ; 11(1): 5153, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056991

RESUMO

Correlation networks are frequently used to statistically extract biological interactions between omics markers. Network edge selection is typically based on the statistical significance of the correlation coefficients. This procedure, however, is not guaranteed to capture biological mechanisms. We here propose an alternative approach for network reconstruction: a cutoff selection algorithm that maximizes the overlap of the inferred network with available prior knowledge. We first evaluate the approach on IgG glycomics data, for which the biochemical pathway is known and well-characterized. Importantly, even in the case of incomplete or incorrect prior knowledge, the optimal network is close to the true optimum. We then demonstrate the generalizability of the approach with applications to untargeted metabolomics and transcriptomics data. For the transcriptomics case, we demonstrate that the optimized network is superior to statistical networks in systematically retrieving interactions that were not included in the biological reference used for optimization.


Assuntos
Algoritmos , Glicômica/métodos , Metabolômica/métodos , RNA-Seq/métodos , Interpretação Estatística de Dados , Glicômica/estatística & dados numéricos , Humanos , Imunoglobulina G/metabolismo , Metabolômica/estatística & dados numéricos , RNA-Seq/estatística & dados numéricos
19.
Sci Rep ; 9(1): 13954, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562371

RESUMO

Omics data facilitate the gain of novel insights into the pathophysiology of diseases and, consequently, their diagnosis, treatment, and prevention. To this end, omics data are integrated with other data types, e.g., clinical, phenotypic, and demographic parameters of categorical or continuous nature. We exemplify this data integration issue for a chronic kidney disease (CKD) study, comprising complex clinical, demographic, and one-dimensional 1H nuclear magnetic resonance metabolic variables. Routine analysis screens for associations of single metabolic features with clinical parameters while accounting for confounders typically chosen by expert knowledge. This knowledge can be incomplete or unavailable. We introduce a framework for data integration that intrinsically adjusts for confounding variables. We give its mathematical and algorithmic foundation, provide a state-of-the-art implementation, and evaluate its performance by sanity checks and predictive performance assessment on independent test data. Particularly, we show that discovered associations remain significant after variable adjustment based on expert knowledge. In contrast, we illustrate that associations discovered in routine univariate screening approaches can be biased by incorrect or incomplete expert knowledge. Our data integration approach reveals important associations between CKD comorbidities and metabolites, including novel associations of the plasma metabolite trimethylamine-N-oxide with cardiac arrhythmia and infarction in CKD stage 3 patients.


Assuntos
Rim/metabolismo , Metabolômica , Insuficiência Renal Crônica/metabolismo , Algoritmos , Biomarcadores/sangue , Feminino , Alemanha , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Modelos Teóricos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA