RESUMO
Acinetobacter baumannii, a prominent emerging pathogen, is responsible for persistent and recurrent healthcare-associated infections (HAIs). Its bacterial resistance and virulence factors, such as biofilm formation, contribute to its survival in hospital environments. Combination therapy has proven to be an effective approach for controlling these infections; however, antimicrobial resistance and compound toxicity can hinder antimicrobial efficacy. Numerous in vitro studies have demonstrated the synergistic effect of antimicrobials and natural products against multidrug-resistant (MDR) A. baumannii biofilm. Riparin III, a natural alkamide derived from Aniba riparia (Nees) Mez., possesses various biological activities, including significant antimicrobial potential. Nonetheless, no reports are available on the use of this compound in conjunction with conventional antimicrobials. Hence, this study aimed to investigate the inhibition and eradication of A. baumannii MDR biofilm by combining riparin III and colistin, along with potential ultrastructural changes observed in vitro. Clinical isolates of A. baumannii, known for their robust biofilm production, were inhibited, or eradicated in the presence of the riparin III/colistin combination. Furthermore, the combination resulted in several ultrastructural alterations within the biofilm, such as elongated cells and coccus morphology, partial or complete disruption of the biofilm's extracellular matrix, and cells exhibiting cytoplasmic material extravasation. At the synergistic concentrations, the riparin III/colistin combination exhibited a low hemolytic percentage, ranging from 5.74% to 6.19%, exerting inhibitory and eradicating effects on the A. baumannii biofilm, accompanied by notable ultrastructural changes. These findings suggest its potential as a promising alternative for therapeutic purposes.
RESUMO
AIMS: We investigated the putative fungistatic and fungicidal activities of pomegranate sarcotesta lectin (PgTeL) against Cryptococcus neoformans B3501 (serotype D), specifically the ability of PgTeL to inhibit yeast capsule and biofilm formation in this strain. METHODS AND RESULTS: PgTeL showed a minimum inhibitory concentration of 172.0 µg ml-1, at which it did not exhibit a fungicidal effect. PgTeL concentrations of 4.0-256.0 µg ml-1 reduced biofilm biomass by 31.0%-64.0%. Furthermore, 32.0-256.0 µg ml-1 PgTeL decreased the metabolic activity of the biofilm by 32.0%-93.0%. Scanning electron microscopy images clearly revealed disruption of the biofilm matrix. Moreover, PgTeL disrupted preformed biofilms. At concentrations of 8.0-256.0 µg ml-1, PgTeL reduced metabolic activity in C. neoformans by 36.0%-92.0%. However, PgTeL did not inhibit the ability of B3501 cells to form capsules under stress conditions. CONCLUSIONS: PgTeL inhibited biofilm formation and disrupted preformed biofilms, demonstrating its potential for use as an anticryptococcal agent.
Assuntos
Criptococose , Cryptococcus neoformans , Punica granatum , Lectinas/farmacologia , Punica granatum/metabolismo , Plâncton/metabolismo , Biofilmes , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/metabolismoRESUMO
Schistosomiasis affects about 260â million people worldwide and the search for new schistosomicidal compounds is urgent. In this study we evaluated the inâ vitro effect of barbatic acid against schistosomulae and young worms of Schistosoma mansoni. The barbatic acid was evaluated through the bioassay of motility and mortality, cellular viability and ultrastructural analysis of juvenile stages through Scanning Electron Microscopy. Barbatic acid showed a schistosomicidal effect against schistosomulae and young worms of S. mansoni after 3â h of exposure. At the end of 24â h, barbatic acid showed 100 %, 89.5 %, 52 % and 28.5 % of lethality for schistosomulae at the concentrations of 200, 100, 50 and 25â µM, respectively. For young worms, barbatic acid showed 100 % and 31.7 % of lethality at the concentrations of 200 and 100â µM, respectively. Motility changes were observed at all sublethal concentrations. There was a significant reduction in the viability of young worms after exposure to barbatic acid at 50, 100 and 200â µM. Extensive damage to the schistosomulae and young worm's tegument, was observed from 50â µM. This report provides data showing the schistosomicidal effect of barbatic acid on schistosomulae and young worms of S.â mansoni, causing death, motility changes and ultrastructural damage to worms.
Assuntos
Anti-Helmínticos , Ácidos Ftálicos , Esquistossomicidas , Animais , Schistosoma mansoni , Anti-Helmínticos/farmacologia , Ácidos Ftálicos/farmacologia , Esquistossomicidas/farmacologia , Microscopia Eletrônica de VarreduraRESUMO
Plants of the genus Psidium have been employed in "in natura" consumption and agroindustry, and owing to the diversity of phytochemicals, the development of new pharmaceutical forms has received remarkable research interest. In this study, the essential oil obtained from Psidium glaziovianum (PgEO) leaves were evaluated antinociceptive and anti-inflammatory activities were evaluated in mouse models. Initially, PgEO was characterized by gas chromatography-mass spectrometry and gas chromatography with flame ionization detection, and the profile was dominated by sesquiterpene compounds. In the evaluation of acute antinociceptive activity (abdominal contortions induced by acetic acid, formalin, tail immersion, and hot plate tests), PgEO promoted a reduction in nociception in the chemical and thermal models. Additionally, the potential underlying mechanism was investigated using pain pathway blockers, and the results revealed a combined action of opioidergic and muscarinic pathways. The anti-inflammatory potential was confirmed by anti-edematogenic action, reduced cell migration, pro-inflammatory cytokine production, and granuloma formation in chronic processes. This study provides evidence that PgEO can be effective for the treatment of pain and acute and chronic inflammation.
Assuntos
Óleos Voláteis , Psidium , Administração Oral , Analgésicos , Animais , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Camundongos , Óleos Voláteis/farmacologia , Dor/tratamento farmacológico , Extratos Vegetais , Folhas de Planta/química , Psidium/químicaRESUMO
Biomphalaria spp. snails are intermediary hosts of Schistosoma mansoni, etiologic agent of intestinal schistosomiasis, one of the most important neglected tropical diseases. Biomphalaria straminea is an important intermediary host that possess a different phenotype to parasite infection but shows a large geographic distribution and high capacity of new ecologic niche invasion. Our purpose was to characterize for the first time the differentially expressed proteome in B. straminea during two times intervals after primary and secondary exposure to S. mansoni. The hemolymph was collected at 1 and 15 days after primary and secondary exposure of snails to the parasite. Total proteins were extracted and digested with trypsin. LC-MS/MS label-free quantification was performed and analyzed using Maxquant and Perseus software. Proteins were identified and annotated using Blast2GO tools. After 1 day of exposure, most of upregulated proteins are hemoglobin type 2, C and H type lectins, molecules related to cell adhesion, and response to oxidative stress. After 15 days, we found a similar pattern of upregulated proteins but some fibrinogen-related proteins (FREPs) and TEPs homologs were downregulated. Regarding the differentially expressed proteins during secondary response, the principal immune-related proteins upregulated were C and H type lectins, cellular adhesion molecules, biomphalysin, and FREP3. We noted a several upregulated biological processes during both responses that could be the one of the key points of efficacy in the immune response to parasite. Our data suggests different immune mechanisms used by B. straminea snails challenged with S. mansoni.
Assuntos
Biomphalaria , Esquistossomose mansoni , Animais , Cromatografia Líquida , Memória Imunológica , Proteômica , Schistosoma mansoni , Espectrometria de Massas em TandemRESUMO
Acinetobacter baumannii is an opportunistic pathogen associated with increased morbidity and mortality in Healthcare-associated infections (HAI). Combination antimicrobial therapy, meropenem, amikacin and colistin, has been used as an alternative in multidrug-resistant (MDR) A. baumannii infections due to reduced treatment options. However, these combinations are not always effective and exhibit high toxicity. Empiric therapy of intravenous immunoglobulin (IVIG) associated with antimicrobials has shown promising results in bacterial infections, considering the immunomodulatory action of IVIG. Thus, the aim of this study was to determine the combined antimicrobial action and to describe the ultrastructural changes caused in ten MDR A. baumannii isolates submitted to IVIG alone and in combination with colistin, meropenem and amikacin. Minimum Inhibitory Concentration (MIC) of antimicrobials and checkerboard were determined. Isolates were submitted to 4 mg/mL of IVIG alone and in combination with different synergistic sub-MIC of antimicrobials tested, and processed for scanning electron microscopy. Nine bacterial isolates showed meropenem-resistant, two isolates had colistin-intermediate, and four isolates were considered intermediate to amikacin. Synergism in five isolates for meropenem/amikacin and meropenem/colistin were observed. Bacterial cells submitted to IVIG and meropenem, amikacin and colistin presented several ultrastructural changes, such as cell elongation and rupture, membrane roughness, incomplete cell division, cell surface "bubbles" and "depression". A. baumannii isolates presented high resistance to meropenem and synergism among evaluated antimicrobials. In addition, it was possible to verify in vitro that IVIG associated with meropenem, amikacin and colistin is a promising alternative for MDR A. baumannii infections. Thus, these data support the continued empirical use and stimulate in vivo analyzes with IVIG to search for new therapeutic options for HAI.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Amicacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Humanos , Imunoglobulinas Intravenosas , Meropeném/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Natural products have been used to treat various infections; however, the development of antimicrobials has made natural products in disuse. Riparin I, II and III are natural alkamide isolated from Aniba riparia (Ness) Mez (Lauraceae), that exhibit economic importance and it is used in traditional medicine, and popularly known as "louro". This study investigated the cytotoxicity, antimicrobial and antibiofilm activity, and ultrastructural changes in vitro by riparins I, II and III in Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa. We analyzed the cytotoxicity by MTT assay in Vero cells and hemolytic action verified in human erythrocytes. The antimicrobial activity was determined by microdilution in broth against ATCC strains, identifying the susceptible species. Subsequently, only the MDR isolates of sensitive bacterial species were evaluated regarding its biofilm formation and ultrastructural changes. Riparin I presented low cytotoxicity and hemolytic percentage ranging from of 9.01%-12.97%. Only the riparin III that showed antimicrobial activity against MDR clinical isolates, and significant reduction in biofilm formation in S. aureus. Moreover, the riparin III promoted ultrastructural changes in bacterial cells, such as elongated cellular without bacterial septum, cells with a rugged appearance on the cell surface and cytoplasmic material extravasation. As has been noted riparin III has an inhibitory potential against biofilm formation in S. aureus, besides having antimicrobial activity and promoting ultrastructural changes in MDR clinical isolates. Thus, riparin III is an interesting alternative for further studies aiming to develop new therapeutic options.
Assuntos
Farmacorresistência Bacteriana Múltipla , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Biofilmes , Chlorocebus aethiops , Humanos , Testes de Sensibilidade Microbiana , Células VeroRESUMO
For many years, the immune response of invertebrates was considered to lack any mechanism of memory. However, the study of their response has shown a kind of acquired immunity, which is not so well understood given the lack of knowledge of the invertebrate defense system. This event can be called "innate immune memory." Recent studies using Biomphalaria glabrata snails have reported this phenomenon, relating it to an increase in humoral products, but no focus was given to hemocyte response or to other species of snails. In this study, we focus on hemocyte dynamics and some humoral factors in the species B. glabrata and B. straminea, the most widespread species in Brazil, sensitized and non-sensitized to the Schistosoma mansoni worm. We report a change in the prevalent hemocyte type after sensitization, through an increase in the proportion of granulocytes, as well as a change in the total number of hemocytes caused by a second exposure to the parasite. We also showed that melanization is not a key factor in Biomphalaria snail defense and varies little after the second exposure event. The data reported in this article confirm the effect of immune priming on these snails and suggest that the increase of humoral products shown in the literature is accompanied by variation in hemocytes after sensitization.
Assuntos
Biomphalaria/imunologia , Biomphalaria/parasitologia , Hemócitos/imunologia , Memória Imunológica/imunologia , Schistosoma mansoni/imunologia , Animais , Brasil , Granulócitos/imunologia , Interações Hospedeiro-Parasita , Schistosoma mansoni/patogenicidadeRESUMO
Triple negative breast cancer (TNBC) is a highly heterogeneous disease, which influences the therapeutic response and makes difficult the discovery of effective targets. This heterogeneity is attributed to the presence of breast cancer stem cells (BCSCs), which determines resistance to chemotherapy and subsequently disease recurrence and metastasis. In this context, this work aimed to evaluate the morphological and phenotypic cellular heterogeneity of two TNBC cell lines cultured in monolayer and tumorsphere (TS) models by fluorescence and electron microscopy and flow cytometry. The BT-549 and Hs 578T analyses demonstrated large phenotypic and morphological heterogeneity between these cell lines, as well as between the cell subpopulations that compose them. BT-549 and Hs 578T are heterogeneous considering the cell surface marker CD44 and CD24 expression, characterizing BCSC mesenchymal-like cells (CD44+/CD24-), epithelial cells (CD44-/CD24+), hybrid cells with mesenchymal and epithelial features (CD44+/CD24+), and CD44-/CD24- cells. BCSC epithelial-like cells (ALDH+) were found in BT-549, BT-549 TS, and Hs 578T TS; however, only BT-549 TS showed a high ALDH activity. Ultrastructural characterization showed the heterogeneity within and among BT-549 and Hs 578T in monolayer and TS models being formed by more than one cellular type. Further, the mesenchymal characteristic of these cells is demonstrated by E-cadherin absence and filopodia. It is well known that tumor cell heterogeneity can influence survival, therapy responses, and the rate of tumor growth. Thus, molecular understanding of this heterogeneity is essential for the identification of potential therapeutic options and vulnerabilities of oncological patients.
Assuntos
Células-Tronco Neoplásicas/ultraestrutura , Fenótipo , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologiaRESUMO
Systemic infections due to Candida tropicalis are conditions which can frequently lead to death. The aim of this report is to describe the features of C. tropicalis biofilm in a patient with catheter-associated fungemia.
Assuntos
Candida tropicalis/isolamento & purificação , Candidíase Invasiva/diagnóstico , Candidíase Invasiva/patologia , Infecções Relacionadas a Cateter/diagnóstico , Infecções Relacionadas a Cateter/patologia , Neoplasias da Língua/complicações , Biofilmes/crescimento & desenvolvimento , Candidíase Invasiva/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Catéteres/microbiologia , Humanos , Microscopia Eletrônica de VarreduraRESUMO
Phthalimide, 1,3-thiazole, and thiazolidinone cores are considered privileged scaffolds and represent an attractive starting point to design new bioactive compounds for neglected tropical disease (NTD). Schistosomiasis is a NTD, caused by Schistosoma worms which praziquantel (PZQ) is the only drug used to treat humans, but the decrease in the effect after treatment has been reported. Recently, some phthalimide-thiazole derivatives exhibited in vitro antischistosomal activity against adult worms with significant ultrastructural changes and a lower cytotoxic effect on splenocytes. This new biological phthalimido-thiazole profile has motivated us to evaluate a new generation of such molecules in immature and adult worms. Thus, a phthalimido-thiazolidinone derivative, (3c), and three phthalimido-thiazoles (6c, 7a, and 7h) were evaluated concerning their in vitro activity on schistosomulae and adult worms. The results showed that these compounds brought a significant reduction on the mortality, inhibited oviposition, and then induced mortality in immature and adult worms alike. According to scanning electron microscopy, the tegument was the principal target for 7a and 7h and revealed gradual damage to the tegument surface, inducing destruction and decomposition of the tegument in the same areas and exposition of subtegumental tissue and of muscle tissue. Furthermore, they caused less toxicity in splenocytes than PZQ. Compounds 7a and 7h revealed to possess promising activity against larval forms. According to the present study, the privileged structure phthalimido-thiazoles act as a molecular framework that has antischistosomal activity and most form the basis to the next pre-clinical tests. Graphical abstract.
Assuntos
Ftalimidas , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Tiazóis , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Ftalimidas/química , Ftalimidas/farmacologia , Ftalimidas/uso terapêutico , Schistosoma mansoni/ultraestrutura , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/uso terapêuticoRESUMO
The aim of this study was to characterize the ultrastructural effects caused by ß-lactam antibiotics in Klebsiella pneumoniae isolates. Three K. pneumoniae clinical isolates were selected for the study with resistance profiles for third-generation cephalosporins, aztreonam, and/or imipenem and with different resistance genes for extended-spectrum ß-lactamases (ESBL) or Klebsiella pneumoniae carbapenemase (KPC). Two K. pneumoniae isolates obtained from the microbiota, which were both resistant to amoxicillin and ampicillin, were also analyzed. In accordance with the susceptibility profile, the clinical isolates were subjected to subminimum inhibitory concentrations (sub-MICs) of cefotaxime, ceftazidime, aztreonam, and imipenem and the isolates from the microbiota to ampicillin and amoxicillin, for analysis by means of scanning and transmission electron microscopy. The K. pneumoniae isolates showed different morphological and ultrastructural changes after subjection to ß-lactams tested at different concentrations, such as cell filamentation, loss of cytoplasmic material, and deformation of dividing septa. Our results demonstrate that K. pneumoniae isolates harboring different genes that encode for ß-lactamases show cell alterations when subjected to different ß-lactam antibiotics, thus suggesting that they possess residual activity in vitro, despite the phenotypic resistance presented in the isolates analyzed.
Assuntos
Antibacterianos/farmacologia , Genes Bacterianos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/ultraestrutura , Microbiota/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamas/farmacologia , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Análise de Sequência de DNARESUMO
Schistosomiasis is a chronic and debilitating disease caused by a trematode of the genus Schistosoma and affects over 207 million people. Chemotherapy is the only immediate recourse for minimizing the prevalence of this disease and involves predominately the administration of a single drug, praziquantel (PZQ). Although PZQ has proven efficacy, there is a recognized need to develop new drugs as schistosomicides since studies have shown that repeated use of this drug in areas of endemicity may cause a temporary reduction in susceptibility in isolates of Schistosoma mansoni. Hydrazones, thiosemicarbazones, phthalimides, and thiazoles are thus regarded as privileged structures used for a broad spectrum of activities and are potential candidates for sources of new drug prototypes. The present study determined the in vitro schistosomicidal activity of 10 molecules containing these structures. During the assays, parameters such motility and mortality, oviposition, morphological changes in the tegument, cytotoxicity, and immunomodulatory activity caused by these compounds were evaluated. The results showed that compounds formed of thiazole and phthalimide led to higher mortality of worms, with a significant decline in motility, inhibition of pairing and oviposition, and a mortality rate of 100% starting from 144 h of exposure. These compounds also stimulated the production of nitric oxide and tumor necrosis factor alpha (TNF-α), thereby demonstrating the presence of immunomodulatory activity. The phthalyl thiazole LpQM-45 caused significant ultrastructural alterations, with destruction of the tegument in both male and female worms. According to the present study, phthalyl thiazole compounds possess antischistosomal activities and should form the basis for future experimental and clinical trials.
Assuntos
Schistosoma mansoni/efeitos dos fármacos , Esquistossomicidas/farmacologia , Tiazóis/farmacologia , Tiossemicarbazonas/farmacologia , Animais , Humanos , Microscopia Eletrônica de VarreduraRESUMO
Candida species resistant to fluconazole have raised concern in the scientific medical community due to high mortality in patients with invasive disease. In developing countries, such as Brazil, fluconazole is the most commonly used antifungal, and alternative treatments are expensive or not readily available. Furthermore, the occurrence of biofilms is common, coupled with their inherent resistance to antifungal therapies and the host's immune system, these microbial communities have contributed to making infections caused by these yeasts an enormous clinical challenge. Therefore, there is an urgent need to develop alternative medicines, which surpass the effectiveness of already used therapies, but which are also effective against biofilms. Therefore, the present study aimed to describe for the first time the antifungal and antibiofilm action of the derivative 2-amino-5,6,7,8-tetrahydro-4 H-cyclohepta[b]thiophene-3-isopropyl carboxylate (2AT) against clinical strains of Candida spp. resistant to fluconazole (FLZ). When determining the minimum inhibitory concentrations (MIC), it was found that the compound has antifungal action at concentrations of 100 to 200 µg/mL, resulting in 100% inhibition of yeast cells. Its synergistic effect with the drug FLZ was also observed. The antibiofilm action of the compound in subinhibitory concentrations was detected, alone and in association with FLZ. Moreover, using scanning electron microscopy, it was observed that the compound 2AT in isolation was capable of causing significant ultrastructural changes in Candida. Additionally, it was also demonstrated that the compound 2AT acts by inducing characteristics compatible with apoptosis in these yeasts, such as chromatin condensation, when visualized by transmission electron microscopy, indicating the possible mechanism of action of this molecule. Furthermore, the compound did not exhibit toxicity in J774 macrophage cells up to a concentration of 4000 µg/mL. In this study, we identify the 2AT derivative as a future alternative for invasive candidiasis therapy, in addition, we highlighted the promise of a strategy combined with fluconazole in combating Candida infections, especially in cases of resistant isolates.
RESUMO
This study aimed to determine the composition of the essential oil of Mentha x villosa and to evaluate its biological effects in vitro on adult worms of S. mansoni. Rotundifolone (70.96 %), limonene (8.75 %), trans-caryophyllene (1.46 %), and ß-pinene (0.81 %) were shown to be the major constituents of this oil. Adult worms of S. mansoni were incubated with different concentrations of the essential oil (1, 10, 100, 250, 500, and 1000 µg/mL) and of its constituents rotundifolone (0.7, 3.54, 7.09, 70.96, 177.4, 354.8, and 700.96 µg/mL), limonene (43.75 µg/mL), trans-caryophyllene (7.3 µg/mL), and ß-pinene (4.03 µg/mL). No schistosomicidal activity was identified at the trans-caryophyllene and ß-pinene concentrations studied. However, use of the essential oil (10 µg/mL), rotundifolone (7.09 µg/mL), and limonene (43.75 µg/mL) resulted in decreased worm motility continuing until 96 hours of observation. At higher concentrations (100 and 70.96 µg/mL, respectively), both the essential oil and rotundifolone caused mortality among adult worms of S. mansoni. The positive control praziquantel caused the death of all parasites after 24 h of evaluation. The results from this study suggest that the essential oil of Mentha x villosa presents schistosomicidal efficacy.
Assuntos
Mentha/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomicidas/farmacologia , Animais , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/análise , Compostos Bicíclicos com Pontes/farmacologia , Cicloexenos/análise , Cicloexenos/farmacologia , Limoneno , Monoterpenos/análise , Monoterpenos/farmacologia , Óleos Voláteis/química , Extratos Vegetais/química , Sesquiterpenos Policíclicos , Sesquiterpenos/análise , Sesquiterpenos/farmacologia , Terpenos/análise , Terpenos/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Members of the Psidium genus have been suggested in ethnobotanical research for the treatment of various human diseases, and some studies have already proven their popular uses through research, such as Psidium glaziovianum, which is found in Brazil's northeast and southeast regions and has antinociceptive and anti-inflammatory properties; however, the safety of use has not yet been evaluated. AIM OF THE STUDY: This study investigated the safety of using essential oil obtained from P. glaziovianum leaves (PgEO) in vitro and in vivo models. MATERIALS AND METHODS: Cytotoxicity was evaluated in murine erythrocytes, while acute toxicity, genotoxicity (comet assay) and mutagenicity (micronucleus test) studies were performed using Swiss albino mice. RESULTS: In the cytotoxicity assay, the hemolysis rate indicated a low capacity of PgEO to cause cell lysis (0.33-1.78%). In the acute oral toxicity study, animals treated with up to up to 5000 mg/kg body weight did not observe mortality or physiological changes. Neither dosage caused behavioral problems or death in mice over 14 days. The control and 2,000 mg/kg groups had higher feed intake and body weight than the 5,000 mg/kg PgEO group. Erythrocyte count, hemoglobin level, mean corpuscular volume, and MCV decreased, but serum alanine and aspartate aminotransferases increased. In the genotoxic evaluation, 5000 mg/kg PgEO enhanced nucleated blood cell DI and DF. CONCLUSIONS: The present study describes that PgEO can be considered well tolerated in acute exposure at doses up to 2000 mg/kg, however the dose of 5000 mg/kg of PgEO should be used with caution.
Assuntos
Óleos Voláteis , Psidium , Camundongos , Humanos , Animais , Óleos Voláteis/farmacologia , Mutagênicos , Dano ao DNA , Ensaio Cometa , Extratos Vegetais/farmacologia , Testes de MutagenicidadeRESUMO
The high incidence of multidrug-resistant (MDR) Acinetobacter baumannii has been a challenge for health worldwide, due to the reduction of therapeutic options, making the use of antimicrobial combinations necessary for the treatment, such as meropenem, amikacin, and colistin. Antibodies against bacterial species, mainly immunoglobulins G (IgG), are produced for acting as effector mechanisms (neutralization, opsonization, phagocytosis, and complement system activation). Some studies have demonstrated promising results of IgG in combination with antimicrobial preparations against bacterial infections, in which the direct action of IgG has restored the immune system balance. Serious problem caused by the increase of MDR A. baumannii isolates results in a constant search for therapeutic alternatives to defeat these infections. However, this study aims to verify in vitro the phagocytosis rate of the A. baumannii-infected human monocytes, as well as to analyze possible morphological changes induced by intravenous immunoglobulin G (IVIG) with human serum in association with antimicrobials. The phagocytosis rate and bacterial cell binding capacity of IVIG were determined for two A. baumannii isolates submitted to 4 mg/mL of human IVIG alone and in combination with different sub-minimum inhibitory concentrations (sub-MICs) of meropenem, amikacin, and colistin and processed for indirect immunofluorescence. Subsequently, these isolates were resubmitted and coupled with human serum and processed for scanning electron microscopy. There was no statistical difference for phagocytosis rates in the isolates tested. Bacterial isolates showed alterations in cell morphology when exposed to IVIG/human serum alone and in combination with antimicrobials such as alteration in shape, wrinkling, membrane depression, and especially cell rupture with extravasation of cytoplasmic material. The isolates visually differed in the IVIG binding to the bacterial cell, with higher fluorescence intensity, which corresponds to the highest IVIG binding, in the isolate more sensitive to meropenem, amikacin, and colistin. No differences between treatments were observed in the IVIG binding to the bacterial cell. The combined action of IVIG with meropenem, amikacin, and colistin against A. baumannii MDR isolates induced several bacterial cell damages. And when associated with human serum, a massive destruction of cells can be observed. These results may suggest the analysis of the use of IgG preparations for the treatment of A. baumannii MDR infections.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Imunoglobulinas Intravenosas/farmacologia , Imunoglobulinas Intravenosas/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Colistina/farmacologia , Amicacina/farmacologia , Amicacina/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Sinergismo FarmacológicoRESUMO
Clarisia racemosa Ruiz & Pav is a neotropical species found in humid forests from southern Mexico to southern Brazil. There are few studies related to the ethnopharmacological use of C. racemosa. Our objective was to evaluate the hydroalcoholic extract of C. racemosa as a potential antiparasitic agent. For this, we performed in vitro assays against strains of Leishmania amazonensis, Trypanosoma cruzi, Plasmodium falciparum, and Schistosoma mansoni. At the same time, immunomodulatory activity tests were carried out. The results demonstrated that the extract was able to stimulate and activate immune cells. In preliminary antiparasitic tests, structural modifications were observed in the promastigote form of L. amazonensis and in adult worms of S. mansoni. The extract was able to inhibit the growth of trypomastigote form of T. cruzi and finally showed low antiparasitic activity against strains of P. falciparum. It is pioneering work and these results demonstrate that C. racemosa extract is a promising alternative and contributes to the arsenal of possible forms of treatment to combat parasites. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03799-2.
RESUMO
The present work reports the synthesis of a novel series of pyridine-thiazolidinones with anti-Trypanosoma cruzi and leishmanicidal activities (compounds 10-27), derived from 2 or 4-pyridine thiosemicarbazones (1-9). The in vitro assays were performed with Trypanosoma cruzi trypomastigotes and amastigotes, as well as with Leishmania amazonensis promastigotes and amastigotes. The cytotoxicity profile was evaluated using the cell line RAW 264.7. From the 18 pyridine-thiazolidinones, 5 were able to inhibit trypomastigotes. Overall, all compounds inhibited amastigotes, highlighting compounds 15 (0.60 µM), 18 (0.64 µM), 17 (0.81 µM), and 27 (0.89 µM). Compounds 15 and 18 were able to induce parasite cell death through necrosis induction. Analysis by scanning electron microscopy showed that T. cruzi trypomastigotes treated with compounds 15 and 18 induced morphological changes such as shortening, retraction and curvature of the parasite body and leakage of internal content. Regarding the antiparasitic evaluation against Leishmania amazonensis, only compound 27 had a higher selectivity compared to Miltefosine against the amastigote form (IC50 = 5.70 µM). Our results showed that compound 27 presented an antiparasitic activity for both Trypanosoma cruzi and Leishmania amazonensis. After in silico evaluation, it was suggested that the new pyridine-thiazolidinones had an appropriate drug-likeness profile. Our results pointed out a new chemical frame with an anti-Trypanosomatidae profile. The pyridine-thiazolidinones presented here for the first time could be used as a starting point for the development of new antiparasitic agents.
Assuntos
Doença de Chagas , Leishmania mexicana , Tripanossomicidas , Trypanosoma cruzi , Trypanosomatina , Humanos , Relação Estrutura-Atividade , Doença de Chagas/tratamento farmacológico , Antiparasitários/farmacologia , Tripanossomicidas/químicaRESUMO
The present work aimed to carry out in vitro biological assays of thiazole compounds against adult worms of Schistosoma mansoni, as well as the in silico determination of pharmacokinetic parameters to predict the oral bioavailability of these compounds. In addition to presenting moderate to low cytotoxicity against mammalian cells, thiazole compounds are not considered hemolytic. All compounds were initially tested at concentrations ranging from 200 to 6.25 µM against adult worms of S. mansoni parasites. The results showed the best activity of PBT2 and PBT5 at a concentration of 200 µM, which caused 100% mortality after 3 h of incubation. While at 6 h of exposure, 100% mortality was observed at the concentration of 100 µM. Subsequent studies with these same compounds allowed classifying PBT5, PBT2, PBT6 and PBT3 compounds, which were considered active and PBT1 and PBT4 compounds, which were considered inactive. In the ultrastructural analysis the compounds PBT2 and PBT5 (200 µM) promoted integumentary changes with exposure of the muscles, formation of integumentary blisters, integuments with abnormal morphology and destruction of tubercles and spicules. Therefore, the compounds PBT2 and PBT5 are promising antiparasitics against S. mansoni.