Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroscience ; 538: 46-58, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38110170

RESUMO

Ischemia-reperfusion (IR) induces a wide range of irreversible injuries. Cerebral IR injury (IRI) refers to additional brain tissue damage that occurs after blood flow is restored following cerebral ischemia. Currently, no established methods exist for treating IRI. Oxidative stress is recognized as a primary mechanism initiating IRI and a crucial focal target for its treatment. Urolithin B, a metabolite derived from ellagitannins, antioxidant polyphenols, has demonstrated protective effects against oxidative stress in various disease conditions. However, the precise mechanism underlying UB's effect on IRI remains unclear. In our current investigation, we assessed UB's ability to mitigate neurological functional impairment induced by IR using a neurological deficit score. Additionally, we examined cerebral infarction following UB administration through TTC staining and neuron Nissl staining. UB's inhibition of neuronal apoptosis was demonstrated through the TUNEL assay and Caspase-3 measurement. Additionally, we examined UB's effect on oxidative stress levels by analyzing malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity, and immunohistochemistry analysis of inducible nitric oxide synthase (iNOS) and 8-hydroxyl-2'-deoxyguanosine (8-OHdG). Notably, UB demonstrated a reduction in oxidative stress levels. Mechanistically, UB was found to stimulate the Nrf2/HO-1 signaling pathway, as evidenced by the significant reduction in UB's neuroprotective effects upon administration of ATRA, an Nrf2 inhibitor. In summary, UB effectively inhibits oxidative stress induced by IR through the activation of the Nrf2/HO-1 signaling pathway. These findings suggest that UB holds promise as a therapeutic agent for the treatment of IRI.


Assuntos
Isquemia Encefálica , Cumarínicos , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Estresse Oxidativo , Infarto Cerebral , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA