RESUMO
Although concussion is one of the greatest health challenges today, our physical understanding of the cause of injury is limited. In this Letter, we simulated football head impacts in a finite element model and extracted the most dominant modal behavior of the brain's deformation. We showed that the brain's deformation is most sensitive in low frequency regimes close to 30 Hz, and discovered that for most subconcussive head impacts, the dynamics of brain deformation is dominated by a single global mode. In this Letter, we show the existence of localized modes and multimodal behavior in the brain as a hyperviscoelastic medium. This dynamical phenomenon leads to strain concentration patterns, particularly in deep brain regions, which is consistent with reported concussion pathology.
Assuntos
Concussão Encefálica/etiologia , Futebol Americano/lesões , Modelos Biológicos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Simulação por Computador , Humanos , Modelos AnatômicosRESUMO
High-dimensional chaotic dynamical systems can exhibit strongly transient features. These are often associated with instabilities that have a finite-time duration. Because of the finite-time character of these transient events, their detection through infinite-time methods, e.g., long term averages, Lyapunov exponents or information about the statistical steady-state, is not possible. Here, we utilize a recently developed framework, the Optimally Time-Dependent (OTD) modes, to extract a time-dependent subspace that spans the modes associated with transient features associated with finite-time instabilities. As the main result, we prove that the OTD modes, under appropriate conditions, converge exponentially fast to the eigendirections of the Cauchy-Green tensor associated with the most intense finite-time instabilities. Based on this observation, we develop a reduced-order method for the computation of finite-time Lyapunov exponents (FTLE) and vectors. In high-dimensional systems, the computational cost of the reduced-order method is orders of magnitude lower than the full FTLE computation. We demonstrate the validity of the theoretical findings on two numerical examples.
RESUMO
Blood flow reconstruction in the vasculature is important for many clinical applications. However, in clinical settings, the available data are often quite limited. For instance, transcranial Doppler ultrasound is a non-invasive clinical tool that is commonly used in clinical settings to measure blood velocity waveforms at several locations. This amount of data is grossly insufficient for training machine learning surrogate models, such as deep neural networks or Gaussian process regression. In this work, we propose a Gaussian process regression approach based on empirical kernels constructed by data generated from physics-based simulations-enabling near-real-time reconstruction of blood flow in data-poor regimes. We introduce a novel methodology to reconstruct the kernel within the vascular network. The proposed kernel encodes both spatiotemporal and vessel-to-vessel correlations, thus enabling blood flow reconstruction in vessels that lack direct measurements. We demonstrate that any prediction made with the proposed kernel satisfies the conservation of mass principle. The kernel is constructed by running stochastic one-dimensional blood flow simulations, where the stochasticity captures the epistemic uncertainties, such as lack of knowledge about boundary conditions and uncertainties in vasculature geometries. We demonstrate the performance of the model on three test cases, namely, a simple Y-shaped bifurcation, abdominal aorta and the circle of Willis in the brain.
Assuntos
Modelos Cardiovasculares , Humanos , Distribuição Normal , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologiaRESUMO
Determining brain hemodynamics plays a critical role in the diagnosis and treatment of various cerebrovascular diseases. In this work, we put forth a physics-informed deep learning framework that augments sparse clinical measurements with one-dimensional (1D) reduced-order model (ROM) simulations to generate physically consistent brain hemodynamic parameters with high spatiotemporal resolution. Transcranial Doppler (TCD) ultrasound is one of the most common techniques in the current clinical workflow that enables noninvasive and instantaneous evaluation of blood flow velocity within the cerebral arteries. However, it is spatially limited to only a handful of locations across the cerebrovasculature due to the constrained accessibility through the skull's acoustic windows. Our deep learning framework uses in vivo real-time TCD velocity measurements at several locations in the brain combined with baseline vessel cross-sectional areas acquired from 3D angiography images and provides high-resolution maps of velocity, area, and pressure in the entire brain vasculature. We validate the predictions of our model against in vivo velocity measurements obtained via four-dimensional (4D) flow magnetic resonance imaging (MRI) scans. We then showcase the clinical significance of this technique in diagnosing cerebral vasospasm (CVS) by successfully predicting the changes in vasospastic local vessel diameters based on corresponding sparse velocity measurements. We show this capability by generating synthetic blood flow data after cerebral vasospasm at various levels of stenosis. Here, we demonstrate that the physics-based deep learning approach can estimate and quantify the subject-specific cerebral hemodynamic variables with high accuracy despite lacking knowledge of inlet and outlet boundary conditions, which is a significant limitation for the accuracy of the conventional purely physics-based computational models.
Assuntos
Vasoespasmo Intracraniano , Velocidade do Fluxo Sanguíneo , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Hemodinâmica , Humanos , Redes Neurais de Computação , Física , Ultrassonografia Doppler Transcraniana/métodosRESUMO
Understanding turbulence is key to our comprehension of many natural and technological flow processes. At the heart of this phenomenon lies its intricate multiscale nature, describing the coupling between different-sized eddies in space and time. Here we analyze the structure of turbulent flows by quantifying correlations between different length scales using methods inspired from quantum many-body physics. We present the results for interscale correlations of two paradigmatic flow examples, and use these insights along with tensor network theory to design a structure-resolving algorithm for simulating turbulent flows. With this algorithm, we find that the incompressible Navier-Stokes equations can be accurately solved even when reducing the number of parameters required to represent the velocity field by more than one order of magnitude compared to direct numerical simulation. Our quantum-inspired approach provides a pathway towards conducting computational fluid dynamics on quantum computers.
RESUMO
Head motion induced by impacts has been deemed as one of the most important measures in brain injury prediction, given that the vast majority of brain injury metrics use head kinematics as input. Recently, researchers have focused on using fast approaches, such as machine learning, to approximate brain deformation in real time for early brain injury diagnosis. However, training such models requires large number of kinematic measurements, and therefore data augmentation is required given the limited on-field measured data available. In this study we present a principal component analysis-based method that emulates an empirical low-rank substitution for head impact kinematics, while requiring low computational cost. In characterizing our existing data set of 537 head impacts, each consisting of 6 degrees of freedom measurements, we found that only a few modes, e.g., 15 in the case of angular velocity, is sufficient for accurate reconstruction of the entire data set. Furthermore, these modes are predominantly low frequency since over 70% of the angular velocity response can be captured by modes that have frequencies under 40 Hz. We compared our proposed method against existing impact parametrization methods and showed significantly better performance in injury prediction using a range of kinematic-based metrics-such as head injury criterion (HIC), rotational injury criterion (RIC), and brain injury metric (BrIC)-and brain tissue deformation-based metrics-such as brain angle metric (BAM), maximum principal strain (MPS), and axonal fiber strains (FS). In all cases, our approach reproduced injury metrics similar to the ground truth measurements with no significant difference, whereas the existing methods obtained significantly different (p < 0.01) values as well as substantial differences in injury classification sensitivity and specificity. This emulator will enable us to provide the necessary data augmentation to build a head impact kinematic data set of any size. The emulator and corresponding examples are available on our website.