Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 241(3): 753-763, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719442

RESUMO

Clarifying the underlying mechanisms of epileptogenesis is important in preventing the progression of chronic epilepsy. In epilepsy, the mTOR (mammalian target of rapamycin) pathway plays a critical role in mediating the mechanism of epileptogenesis. In this study, we investigate whether apigenin can exert antiepileptogenic effects through the inhibition of mTOR in the kainate model of epilepsy. For assessing the antiepileptogenic effect of apigenin in kainic acid (KA)-induced temporal lobe epilepsy (TLE) model, apigenin at a dose of 50 mg/kg was administrated by gavage for 6 days. An intracranial electroencephalogram (iEEG) was performed to confirm the establishment of status epilepticus. BrdU was used to detect neurogenesis in the CA3, and dentate gyrus and mossy fiber sproutings were assessed by Timm staining. The expression of mTOR was quantified via western blot. We found that apigenin-pretreatment had a significant inhibitory effect on neural cell death, spontaneous seizure spikes, aberrant neurogenesis, mTOR hyperactivity, and aberrant mossy fiber sprouting. Overall, these results suggest that apigenin has an antiepileptogenic effect and may be a useful target for inhibiting mTOR hyperactivity in epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Animais , Humanos , Apigenina/farmacologia , Modelos Animais de Doenças , Hipocampo , Ácido Caínico/farmacologia , Fibras Musgosas Hipocampais , Serina-Treonina Quinases TOR/metabolismo
2.
IBRO Neurosci Rep ; 16: 211-223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38352700

RESUMO

In pre-adolescence, repeated anesthesia may be required for therapeutic interventions. Adult cognitive and neurobehavioral problems may result from preadolescent exposure to anesthetics. This study examined the long-term morphological and functional effects of repeated sub-anesthetic doses of ketamine exposure on male and female rat adults during pre-adolescence. Weaned 48 pre-adolescent rats from eight mothers and were randomly divided into four equal groups: control group and the ketamine group of males and females (20 mg/kg daily for 14 days); then animals received care for 20-30 days. Repeated exposure to sub-anesthetic doses of ketamine on cognitive functions was assayed using Social discrimination and novel object tests. Besides, an elevated plus maze and fear conditioning apparatus were utilized to determine exploratory and anxiety-like behavior in adults. Toluidine blue stain was used to evaluate the number of dead neurons in the hippocampus, and the effects of ketamine on synaptic plasticity were compared in the perforant pathway of the CA1 of the hippocampus. Our study indicates that repeated exposure to sub-anesthetic doses of ketamine during pre-adolescence can result in neurobehavioral impairment in male and female rat adulthood but does not affect anxiety-like behavior. We found a significant quantifiable increase in dark neurons. Recorded electrophysiologically, repeat sub-anesthetic doses of ketamine resulted in hampering long-term potentiation and pair pulse in male adult animals. Our results showed that repeated exposure to sub-anesthetic doses of ketamine during pre-adolescence can induce hippocampus and neuroplasticity changes later in adulthood. This study opens up a new line of inquiry into potential adverse outcomes of repeated anesthesia exposure in pre-adolescent rats.

3.
Physiol Behav ; 271: 114353, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714320

RESUMO

Aquaporin 4 (AQP4) is a protein highly expressed in the central nervous system (CNS) and peripheral nervous system (PNS) as well as various other organs, whose different sites of action indicate its importance in various functions. AQP4 has a variety of essential roles beyond water homeostasis. In this article, we have for the first time summarized different roles of AQP4 in motor and sensory functions, besides cognitive and psychological performances, and most importantly, possible physiological mechanisms by which AQP4 can exert its effects. Furthermore, we demonstrated that AQP4 participates in pathology of different neurological disorders, various effects depending on the disease type. Since neurological diseases involve a spectrum of dysfunctions and due to the difficulty of obtaining a treatment that can simultaneously affect these deficits, it is therefore suggested that future studies consider the role of this protein in different functional impairments related to neurological disorders simultaneously or separately by targeting AQP4 expression and/or polarity modulation.

4.
Regen Ther ; 24: 43-53, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37334242

RESUMO

Introduction: Retinopathy of prematurity (ROP) is a vasoproliferative disease that alters retinal vascular patterns in preterm neonates with immature retinal vasculature. This study was conducted to investigate the effects of cell therapy by bone marrow mononuclear cells (BMMNC) on neurological and vascular damages in a rat model of ROP. Methods: Ten newborn Wistar rats were divided randomly into the control and the oxygen-induced retinopathy (OIR) groups. Animals in the OIR group were incubated in an oxygen chamber to induce retinopathy. One eye of animals in the OIR group received BMMNC suspension (treated eyes), and the contralateral eye received the same volume of saline injection. Then, all animals underwent funduscopy, angiography, electroretinography, histopathology and immunohistochemical assessments. Results: Compared to the saline injection group, eyes treated with BMMNC had less vascular tortuosity while veins and arteries had relatively the same caliber, as revealed by fundus examinations. Eyes in the treatment group showed significantly elevated photopic and scotopic B waves amplitude. Neovascularization in the inner retinal layer and apoptosis of neural retina cells in the treatment group was significantly lower compared to untreated eyes. Also, BMMNC transplantation decreased glial cell activation and VEGF expression in ischemic retina. Conclusions: Our results indicate that intravitreal injection of BMMNC reduces neural and vascular damages and results in recovered retinal function in rat model of ROP. Ease of extraction without in vitro processing, besides the therapeutic effects of BMMNCs, make this source of cells as a new choice of therapy for ROP or other retinal ischemic diseases.

5.
Brain Res Bull ; 188: 133-142, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35918034

RESUMO

Considerable amounts of oxidants are produced in cerebral ischemia, where oxidative stress plays a key role in neuronal damage after ischemia. Klotho, an anti-aging protein, alleviates oxidative stress by activating the transcription of an important antioxidant enzyme, manganese superoxide dismutase (MnSOD), in the nervous system. Thus, increased Klotho expression level could lead to a reduction in neuronal damages after brain ischemia via lowering oxidative stress. It is known that physical activity increases Klotho expressions. In this study, we assessed neuroprotective effects of preconditioning exercise in rats (treadmill running at a speed of 20 m/min,30 min/day, six days/week, for3 weeks) on hippocampal Klotho and MnSOD expression in the brain using an animal model of stroke, middle cerebral artery occlusion (MCAO). Our study revealed a reduction in hippocampal Klotho and MnSOD expression as well as CA1 neuronal activity in MCAO compared to the sham group. Exercise prevented the ischemia-induced decline in Klotho and MnSOD expression levels as well as CA1 neuronal activity in Exercise + MCAO compared to the MCAO group. Also, exercise significantly improved the neurological scores and reduced brain infarction area in Exercise + MCAO in comparison to MCAO group. There was a post-ischemia deficit in the working memory, as measured by spontaneous alternation percentage using Y-maze test, in MCAO compared to the sham group. The latter effect was not observed in the Exercise + MCAO group, which could be related to an increase in the antioxidant capacity as exhibited by Klotho and MnSOD up-regulation. The results were confirmed with a positive correlation between Klotho expression and MnSOD expression which allows proposing Klotho as a potential neuroprotective protein in ischemic stroke with respect to antioxidant defense. In general, the present study suggested that preconditioning exercise induced upregulation of Klotho and MnSOD, as well as attenuated the post-ischemic injuries. The upregulation of Klotho might be an underlying mechanism by which preconditioning exercise plays as a neuroprotective factor against post-ischemic neural injuries in ischemic rats.


Assuntos
Antioxidantes , Isquemia Encefálica , Animais , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA