Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Neurosci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955487

RESUMO

Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.Significance Statement Long-term potentiation (LTP) of sensory synapses onto lamina I projection neurons represents a key mechanism by which the spinal superficial dorsal horn (SDH) can amplify ascending nociceptive transmission to the brain. Here we demonstrate that the activation of D1 or D5 dopamine receptors expressed in spinal astrocytes promotes non-Hebbian LTP at primary afferent inputs onto mouse spinoparabrachial neurons. Furthermore, astrocyte D1/D5R signaling not only retroactively potentiated sensory synapses that were recently active, but also proactively primed synapses to undergo LTP following subsequent stimulation. These results identify dopaminergic signaling onto astrocytes as a key regulator of synaptic metaplasticity in the SDH and suggest that astrocyte D1/D5Rs could serve as a gain control that enables the excessive amplification of spinal nociceptive transmission.

2.
J Neurosci ; 42(3): 350-361, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34815314

RESUMO

Highly correlated firing of primary afferent inputs and lamina I projection neurons evokes synaptic long-term potentiation (LTP), a mechanism by which ascending nociceptive transmission can be amplified at the level of the spinal dorsal horn. However, the degree to which neuromodulatory signaling shapes the temporal window governing spike-timing-dependent plasticity (STDP) at sensory synapses onto projection neurons remains unclear. The present study demonstrates that activation of spinal D1/D5 dopamine receptors (D1/D5Rs) creates a highly permissive environment for the production of LTP in male and female adult mouse spinoparabrachial neurons by promoting non-Hebbian plasticity. Bath application of the mixed D1/D5R agonist SKF82958 unmasked LTP at STDP pairing intervals that normally fail to alter synaptic efficacy. Furthermore, during D1/D5R signaling, action potential discharge in projection neurons became dispensable for LTP generation, and primary afferent stimulation alone was sufficient to induce strengthening of sensory synapses. This non-Hebbian LTP was blocked by the D1/D5R antagonist SCH 39166 or genetic deletion of D5R, and required activation of mGluR5 and intracellular Ca2+ release but was independent of NMDAR activation. D1/D5R-enabled non-Hebbian plasticity was observed across multiple neuronal subpopulations in the superficial dorsal horn but was more prevalent in spinoparabrachial neurons than interneurons. Interestingly, the ability of neonatal tissue damage to promote non-Hebbian LTP in adult projection neurons was not observed in D5R knock-out mice. Collectively, these findings suggest that joint spinal D1/D5R and mGluR5 activation can allow unfettered potentiation of sensory synapses onto the output neurons responsible for conveying pain and itch information to the brain.SIGNIFICANCE STATEMENT Synaptic LTP in spinal projection neurons has been implicated in the generation of chronic pain. Under normal conditions, plasticity at sensory synapses onto adult mouse spinoparabrachial neurons follows strict Hebbian learning rules, requiring coincident presynaptic and postsynaptic firing. Here, we demonstrate that the activation of spinal D1/D5Rs promotes a switch from Hebbian to non-Hebbian LTP so that primary afferent stimulation alone is sufficient to evoke LTP in the absence of action potential discharge in projection neurons, which required joint activation of mGluR5 and intracellular Ca2+ release but not NMDARs. These results suggest that D1/D5Rs cooperate with mGluR5 receptors in the spinal dorsal horn to powerfully influence the amplification of ascending nociceptive transmission to the brain.


Assuntos
Potenciação de Longa Duração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D5/agonistas , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Cálcio/metabolismo , Agonistas de Dopamina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/genética , Receptores de Dopamina D5/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Sinapses/metabolismo
3.
J Neurosci ; 40(20): 3882-3895, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32291327

RESUMO

Neonatal tissue damage induces long-term deficits in inhibitory synaptic transmission within the spinal superficial dorsal horn (SDH) that include a reduction in primary afferent-evoked, feedforward inhibition onto adult projection neurons. However, the subpopulations of mature GABAergic interneurons which are compromised by early-life injury have yet to be identified. The present research illuminates the persistent effects of neonatal surgical injury on the function of inhibitory SDH interneurons derived from the prodynorphin (DYN) lineage, a population that synapses directly onto lamina I spinoparabrachial neurons and is known to suppress mechanical pain and itch in adults. The results demonstrate that hindpaw incision at postnatal day 3 (P3) significantly decreased the strength of primary afferent-evoked glutamatergic drive onto DYN neurons within the adult mouse SDH while increasing the appearance of afferent-evoked inhibition onto the same population. Neonatal injury also dampened the intrinsic membrane excitability of mature DYN neurons, and reduced their action potential discharge in response to sensory input, compared with naive littermate controls. Furthermore, P3 incision decreased the efficacy of inhibitory DYN synapses onto adult spinoparabrachial neurons, which reflected a prolonged reduction in the probability of GABA release. Collectively, the data suggest that early-life tissue damage may persistently constrain the ability of spinal DYN interneurons to limit ascending nociceptive transmission to the adult brain. This is predicted to contribute to the loss of feedforward inhibition onto mature projection neurons, and the "priming" of nociceptive circuits in the developing spinal cord, following injuries during the neonatal period.SIGNIFICANCE STATEMENT Neonatal injury has lasting effects on pain processing in the adult CNS, including a reduction in feedforward inhibition onto ascending projection neurons in the spinal dorsal horn. While it is clear that spinal GABAergic interneurons are comprised of multiple subpopulations that play distinct roles in somatosensation, the identity of those interneurons which are compromised by tissue damage during early life remains unknown. Here we document persistent deficits in spinal inhibitory circuits involving dynorphin-lineage interneurons previously implicated in gating mechanical pain and itch. Notably, neonatal injury reduced the strength of dynorphin-lineage inhibitory synapses onto mature lamina I spinoparabrachial neurons, a major output of the spinal nociceptive network, which could contribute to the priming of pain pathways by early tissue damage.


Assuntos
Dinorfinas , Membro Posterior/lesões , Inibição Neural , Vias Neurais/fisiopatologia , Corno Dorsal da Medula Espinal/lesões , Potenciais de Ação , Animais , Animais Recém-Nascidos , Análise por Conglomerados , Feminino , Glutamatos/fisiologia , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Interneurônios , Camundongos , Neurônios Aferentes , Nociceptividade , Técnicas de Patch-Clamp , Medula Espinal/fisiopatologia , Corno Dorsal da Medula Espinal/fisiopatologia
4.
J Neurosci ; 40(28): 5402-5412, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471877

RESUMO

Axon guidance molecules and neuronal activity have been implicated in the establishment and refinement of neural circuits during development. It is unclear, however, whether these guidance molecule- and activity-dependent mechanisms interact with one another to shape neural circuit formation. The formation of corticospinal (CS) circuits, which are essential for voluntary movements, involves both guidance molecule- and activity-dependent components during development. We previously showed that semaphorin6D (Sema6D)-plexinA1 (PlexA1) signaling eliminates ipsilateral projections of CS neurons in the spinal cord, while other studies demonstrate that CS projections to the spinal cord are eliminated in an activity-dependent manner. Here we show that inhibition of cortical neurons during postnatal development causes defects in elimination of ipsilateral CS projections in mice. We further show that mice that lack the activity-dependent Bax/Bak pathway or caspase-9 similarly exhibit defects in elimination of ipsilateral CS projections, suggesting that the activity-dependent Bax/Bak-caspase-9 pathway is essential for the removal of ipsilateral CS projections. Interestingly, either inhibition of neuronal activity in the cortex or deletion of Bax/Bak in mice causes a reduction in PlexA1 protein expression in corticospinal neurons. Finally, intracortical microstimulation induces activation of only contralateral forelimb muscles in control mice, whereas it induces activation of both contralateral and ipsilateral muscles in mice with cortical inhibition, suggesting that the ipsilaterally projecting CS axons that have been maintained in mice with cortical inhibition form functional connections. Together, these results provide evidence of a potential link between the repellent signaling of Sema6D-PlexA1 and neuronal activity to regulate axon elimination.SIGNIFICANCE STATEMENT Both axon guidance molecules and neuronal activity regulate axon elimination to refine neuronal circuits during development. However, the degree to which these mechanisms operate independently or cooperatively to guide network generation is unclear. Here, we show that neuronal activity-driven Bax/Bak-caspase signaling induces expression of the PlexA1 receptor for the repellent Sema6D molecule in corticospinal neurons (CSNs). This cascade eliminates ipsilateral projections of CSNs in the spinal cord during early postnatal development. The absence of PlexA1, neuronal activity, Bax and Bak, or caspase-9 leads to the maintenance of ipsilateral projections of CSNs, which can form functional connections with spinal neurons. Together, these studies reveal how the Sema6D-PlexA1 signaling and neuronal activity may play a cooperative role in refining CS axonal projections.


Assuntos
Axônios/metabolismo , Caspases/metabolismo , Tratos Piramidais/crescimento & desenvolvimento , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Orientação de Axônios/fisiologia , Camundongos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Neurônios/fisiologia , Tratos Piramidais/metabolismo
5.
J Neurosci ; 39(40): 7815-7825, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31420458

RESUMO

Neonatal tissue injury disrupts the balance between primary afferent-evoked excitation and inhibition onto adult spinal projection neurons. However, whether this reflects cell-type-specific alterations at synapses onto ascending projection neurons, or rather is indicative of global changes in synaptic signaling across the mature superficial dorsal horn (SDH), remains unknown. Therefore the present study investigated the effects of neonatal surgical injury on primary afferent synaptic input to adult mouse SDH interneurons using in vitro patch-clamp techniques. Hindpaw incision at postnatal day (P)3 significantly diminished total primary afferent-evoked glutamatergic drive to adult Gad67-GFP and non-GFP neurons, and reduced their firing in response to sensory input, in both males and females. Early tissue damage also shaped the relative prevalence of monosynaptic A- versus C-fiber-mediated input to mature GABAergic neurons, with an increased prevalence of Aß- and Aδ-fiber input observed in neonatally-incised mice compared with naive littermate controls. Paired presynaptic and postsynaptic stimulation at an interval that exclusively produced spike timing-dependent long-term potentiation (t-LTP) in projection neurons predominantly evoked NMDAR-dependent long-term depression in naive Gad67-GFP interneurons. Meanwhile, P3 tissue damage enhanced the likelihood of t-LTP generation at sensory synapses onto the mature GABAergic population, and increased the contribution of Ca2+-permeable AMPARs to the overall glutamatergic response. Collectively, the results indicate that neonatal injury suppresses sensory drive to multiple subpopulations of interneurons in the adult SDH, which likely represents one mechanism contributing to reduced feedforward inhibition of ascending projection neurons, and the priming of developing pain pathways, following early life trauma.SIGNIFICANCE STATEMENT Mounting clinical and preclinical evidence suggests that neonatal tissue damage can result in long-term changes in nociceptive processing within the CNS. Although recent work has demonstrated that early life injury weakens the ability of sensory afferents to evoke feedforward inhibition of adult spinal projection neurons, the underlying circuit mechanisms remain poorly understood. Here we demonstrate that neonatal surgical injury leads to persistent deficits in primary afferent drive to both GABAergic and presumed glutamatergic neurons in the mature superficial dorsal horn (SDH), and modifies activity-dependent plasticity at sensory synapses onto the GABAergic population. The functional denervation of spinal interneurons within the mature SDH may contribute to the "priming" of developing pain pathways following early life injury.


Assuntos
Interneurônios/patologia , Plasticidade Neuronal , Sensação , Corno Dorsal da Medula Espinal/lesões , Corno Dorsal da Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Ácido gama-Aminobutírico/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Feminino , Glutamato Descarboxilase/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Amielínicas/patologia , Neurônios Aferentes/patologia , Técnicas de Patch-Clamp
6.
J Neural Transm (Vienna) ; 127(4): 467-479, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31399790

RESUMO

Pain is a necessary sensation that prevents further tissue damage, but can be debilitating and detrimental in daily life under chronic conditions. Neuronal activity strongly regulates the maturation of the somatosensory system, and aberrant sensory input caused by injury or inflammation during critical periods of early postnatal development can have prolonged, detrimental effects on pain processing. This review will outline the maturation of neuronal circuits responsible for the transmission of nociceptive signals and the generation of pain sensation-involving peripheral sensory neurons, the spinal cord dorsal horn, and brain-in addition to the influences of the neuroimmune system on somatosensation. This summary will also highlight the unique effects of neonatal tissue injury on the maturation of these systems and subsequent consequences for adult somatosensation. Ultimately, this review emphasizes the need to account for age as an independent variable in basic and clinical pain research, and importantly, to consider the distinct qualities of the pediatric population when designing novel strategies for pain management.


Assuntos
Vias Aferentes , Encéfalo , Doenças do Recém-Nascido , Rede Nervosa , Plasticidade Neuronal/fisiologia , Nociceptividade/fisiologia , Nociceptores/fisiologia , Corno Dorsal da Medula Espinal , Ferimentos e Lesões , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/imunologia , Vias Aferentes/fisiopatologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/imunologia , Encéfalo/fisiopatologia , Humanos , Recém-Nascido , Doenças do Recém-Nascido/tratamento farmacológico , Doenças do Recém-Nascido/imunologia , Doenças do Recém-Nascido/fisiopatologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/imunologia , Rede Nervosa/fisiopatologia , Corno Dorsal da Medula Espinal/crescimento & desenvolvimento , Corno Dorsal da Medula Espinal/imunologia , Corno Dorsal da Medula Espinal/fisiopatologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/fisiopatologia
7.
J Neurosci ; 38(30): 6628-6639, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29934349

RESUMO

Highly correlated presynaptic and postsynaptic activity evokes spike timing-dependent long-term potentiation (t-LTP) at primary afferent synapses onto spinal projection neurons. While prior evidence indicates that t-LTP depends upon an elevation in intracellular Ca2+ within projection neurons, the downstream signaling pathways that trigger the observed increase in glutamate release from sensory neurons remain poorly understood. Using in vitro patch-clamp recordings from female mouse lamina I spino-parabrachial neurons, the present study demonstrates a critical role for prostaglandin synthesis in the generation of t-LTP. Bath application of the selective phospholipase A2 (PLA2) inhibitor arachidonyl trifluoromethyl ketone (AACOCF3) or the cyclooxygenase 2 (Cox-2) inhibitor nimesulide prevented t-LTP at sensory synapses onto spino-parabrachial neurons. Similar results were observed following the block of the EP2 subtype of prostaglandin E2 (PGE2) receptor with PF 04418948. Meanwhile, perfusion with PGE2 or the EP2 agonist butaprost potentiated the amplitude of monosynaptic primary afferent-evoked EPSCs while decreasing the paired-pulse ratio, suggesting a presynaptic site of action. Cox-2 was constitutively expressed in both spinal microglia and lamina I projection neurons within the superficial dorsal horn (SDH). Suppression of microglial activation with minocycline had no effect on the production of t-LTP, suggesting the possibility that prostaglandins produced within projection neurons could contribute to an enhanced probability of glutamate release at primary afferent synapses. Collectively, the results suggest that the amplification of ascending nociceptive transmission by the spinal SDH network is governed by PLA2-Cox-2-PGE2 signaling.SIGNIFICANCE STATEMENT Long-term potentiation (LTP) of primary afferent synapses contributes to the sensitization of spinal nociceptive circuits and has been linked to greater pain sensation in humans. Prior work has implicated elevated glutamate release in the generation of spike timing-dependent LTP (t-LTP) at sensory synapses onto ascending spinal projection neurons, but the underlying mechanisms remain unknown. Here we provide evidence that the activation of EP2 prostaglandin receptors by prostaglandin E2, occurring downstream of phospholipase A2 and cyclooxygenase 2 activation, mediates t-LTP at these synapses via changes in presynaptic function. This suggests that prostaglandins can increase the flow of nociceptive information from the spinal cord to the brain independently of their known ability to suppress synaptic inhibition within the dorsal horn.


Assuntos
Potenciação de Longa Duração/fisiologia , Prostaglandinas/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Camundongos , Transmissão Sináptica/fisiologia
8.
J Neurosci ; 37(6): 1505-1517, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28069928

RESUMO

It is well established that sensory afferents innervating muscle are more effective at inducing hyperexcitability within spinal cord circuits compared with skin afferents, which likely contributes to the higher prevalence of chronic musculoskeletal pain compared with pain of cutaneous origin. However, the mechanisms underlying these differences in central nociceptive signaling remain incompletely understood, as nothing is known about how superficial dorsal horn neurons process sensory input from muscle versus skin at the synaptic level. Using a novel ex vivo spinal cord preparation, here we identify the functional organization of muscle and cutaneous afferent synapses onto immature rat lamina I spino-parabrachial neurons, which serve as a major source of nociceptive transmission to the brain. Stimulation of the gastrocnemius nerve and sural nerve revealed significant convergence of muscle and cutaneous afferent synaptic input onto individual projection neurons. Muscle afferents displayed a higher probability of glutamate release, although short-term synaptic plasticity was similar between the groups. Importantly, muscle afferent synapses exhibited greater relative expression of Ca2+-permeable AMPARs compared with cutaneous inputs. In addition, the prevalence and magnitude of spike timing-dependent long-term potentiation were significantly higher at muscle afferent synapses, where it required Ca2+-permeable AMPAR activation. Collectively, these results provide the first evidence for afferent-specific properties of glutamatergic transmission within the superficial dorsal horn. A larger propensity for activity-dependent strengthening at muscle afferent synapses onto developing spinal projection neurons could contribute to the enhanced ability of these sensory inputs to sensitize central nociceptive networks and thereby evoke persistent pain in children following injury.SIGNIFICANCE STATEMENT The neurobiological mechanisms underlying the high prevalence of chronic musculoskeletal pain remain poorly understood, in part because little is known about why sensory neurons innervating muscle appear more capable of sensitizing nociceptive pathways in the CNS compared with skin afferents. The present study identifies, for the first time, the functional properties of muscle and cutaneous afferent synapses onto immature lamina I projection neurons, which convey nociceptive information to the brain. Despite many similarities, an enhanced relative expression of Ca2+-permeable AMPA receptors at muscle afferent synapses drives greater LTP following repetitive stimulation. A preferential ability of the dorsal horn synaptic network to amplify nociceptive input arising from muscle is predicted to favor the generation of musculoskeletal pain following injury.


Assuntos
Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Neurônios Aferentes/fisiologia , Pele/inervação , Corno Dorsal da Medula Espinal/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Fenômenos Fisiológicos da Pele , Corno Dorsal da Medula Espinal/citologia , Potenciais Sinápticos/fisiologia
9.
J Neurosci ; 36(19): 5405-16, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170136

RESUMO

UNLABELLED: Mounting evidence from both humans and rodents suggests that tissue damage during the neonatal period can "prime" developing nociceptive pathways such that a subsequent injury during adulthood causes an exacerbated degree of pain hypersensitivity. However, the cellular and molecular mechanisms that underlie this priming effect remain poorly understood. Here, we demonstrate that neonatal surgical injury relaxes the timing rules governing long-term potentiation (LTP) at mouse primary afferent synapses onto mature lamina I projection neurons, which serve as a major output of the spinal nociceptive network and are essential for pain perception. In addition, whereas LTP in naive mice was only observed if the presynaptic input preceded postsynaptic firing, early tissue injury removed this temporal requirement and LTP was observed regardless of the order in which the inputs were activated. Neonatal tissue damage also reduced the dependence of spike-timing-dependent LTP on NMDAR activation and unmasked a novel contribution of Ca(2+)-permeable AMPARs. These results suggest for the first time that transient tissue damage during early life creates a more permissive environment for the production of LTP within adult spinal nociceptive circuits. This persistent metaplasticity may promote the excessive amplification of ascending nociceptive transmission to the mature brain and thereby facilitate the generation of chronic pain after injury, thus representing a novel potential mechanism by which early trauma can prime adult pain pathways in the CNS. SIGNIFICANCE STATEMENT: Tissue damage during early life can "prime" developing nociceptive pathways in the CNS, leading to greater pain severity after repeat injury via mechanisms that remain poorly understood. Here, we demonstrate that neonatal surgical injury widens the timing window during which correlated presynaptic and postsynaptic activity can evoke long-term potentiation (LTP) at sensory synapses onto adult lamina I projection neurons, which serve as a major output of the spinal nociceptive circuit and are essential for pain perception. This persistent increase in the likelihood of LTP induction after neonatal injury is predicted to favor the excessive amplification of ascending nociceptive transmission to the mature brain in response to subsequent injury and thereby exacerbate chronic pain.


Assuntos
Potenciação de Longa Duração , Neurônios Aferentes/fisiologia , Nociceptividade , Medula Espinal/crescimento & desenvolvimento , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/fisiologia , Animais , Cálcio/metabolismo , Feminino , Camundongos , Neurônios Aferentes/metabolismo , Percepção da Dor , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Lesões dos Tecidos Moles/fisiopatologia , Medula Espinal/fisiologia
10.
J Neurosci ; 36(4): 1306-15, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818517

RESUMO

Neuropeptide Y (NPY), a 36 aa peptide, regulates stress and emotional behaviors. Preclinical and clinical studies support an association of NPY with trauma-evoked syndromes such as posttraumatic stress disorder (PTSD), although the exact contribution of NPY is not clear. In the current study, we examined functional attributes of NPY in the infralimbic (IL) cortex, an area that regulates fear memories and is reported to be hypoactive in PTSD. Carriers of NPY gene polymorphism rs16147 have been reported to have elevated prefrontal NPY expression. Infusion of NPY into the IL cortex in rats significantly impaired fear extinction memory without affecting conditioned fear expression or acquisition of extinction. Neuroendocrine stress response, depression-like behavior, and working memory performance were not affected by NPY infusion into the IL. The NPY Y1 receptor antagonist BIBO3304 completely abolished NPY effects on fear extinction retrieval. Y1 receptor expression was localized on CaMKII-positive pyramidal projection neurons and GAD67-positive interneurons in the IL. Patch-clamp recordings revealed increased inhibitory synaptic transmission onto IL projection neurons in the presence of NPY. Thus, NPY dampens excitability of IL projection neurons and impairs retrieval of extinction memory by inhibiting consolidation of extinction. Of relevance to PTSD, elevation of prefrontal NPY attributable to the genetic polymorphism rs16147 may contribute to IL hypoactivity, resulting in impaired extinction memory and susceptibility to the disorder. SIGNIFICANCE STATEMENT: Neuropeptide Y (NPY), a stress modulatory transmitter, is associated with posttraumatic stress disorder (PTSD). Contribution of NPY to PTSD symptomology is unclear. PTSD patients have reduced activity in the infralimbic (IL) subdivision of the medial prefrontal cortex (mPFC), associated with compromised extinction memory. No information exists on fear modulation by NPY in the IL cortex, although NPY and NPY receptors are abundant in these areas. This study shows that IL NPY inhibits consolidation of extinction, resulting in impaired retrieval of extinction memory and modulates excitability of IL projection neurons. In addition to providing a novel perspective on extinction memory modulation by NPY, our findings suggest that elevated mPFC NPY in gene polymorphism rs16147 carriers or after chronic stress could increase susceptibility to PTSD.


Assuntos
Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Deficiências da Aprendizagem/induzido quimicamente , Rememoração Mental/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/toxicidade , Córtex Pré-Frontal/citologia , Animais , Arginina/análogos & derivados , Arginina/uso terapêutico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Corticosterona/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutamato Descarboxilase/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeo Y/metabolismo , Potenciais Sinápticos/efeitos dos fármacos
11.
J Neurosci ; 35(6): 2438-51, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25673839

RESUMO

Mounting evidence suggests that neonatal tissue damage evokes alterations in spinal pain reflexes which persist into adulthood. However, less is known about potential concomitant effects on the transmission of nociceptive information to the brain, as the degree to which early injury modulates synaptic integration and membrane excitability in mature spinal projection neurons remains unclear. Here we demonstrate that neonatal surgical injury leads to a significant shift in the balance between synaptic excitation and inhibition onto identified lamina I projection neurons of the adult mouse spinal cord. The strength of direct primary afferent input to mature spino-parabrachial neurons was enhanced following neonatal tissue damage, whereas the efficacy of both GABAergic and glycinergic inhibition onto the same population was compromised. This was accompanied by reorganization in the pattern of sensory input to adult projection neurons, which included a greater prevalence of monosynaptic input from low-threshold A-fibers when preceded by early tissue damage. In addition, neonatal incision resulted in greater primary afferent-evoked action potential discharge in mature projection neurons. Overall, these results demonstrate that tissue damage during early life causes a long-term increase in the gain of spinal nociceptive circuits, and suggest that the prolonged consequences of neonatal trauma may not be restricted to the spinal cord but rather include excessive ascending signaling to supraspinal pain centers.


Assuntos
Rede Nervosa/patologia , Neurônios/patologia , Nociceptores , Dor/patologia , Medula Espinal/patologia , Sinapses/patologia , Animais , Animais Recém-Nascidos , Feminino , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Camundongos , Neurônios Aferentes/patologia , Técnicas de Patch-Clamp , Células do Corno Posterior/patologia , Gravidez , Transmissão Sináptica , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
12.
J Neurosci ; 33(8): 3352-62, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426663

RESUMO

Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst firing and are distinguished by a lower "leak" membrane conductance compared with adjacent nonbursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (K(ir)) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and nonpacemakers indicate the presence of functionally distinct K(ir) currents in these two populations at room temperature. However, K(ir) currents in both groups showed high sensitivity to block by extracellular Ba²âº (IC50 ~ 10 µm), which suggests the presence of "classical" K(ir) (K(ir)2.x) channels in the neonatal SDH. The reduced K(ir) conductance within pacemakers is unlikely to be explained by an absence of particular K(ir)2.x isoforms, as immunohistochemical analysis revealed the expression of K(ir)2.1, K(ir)2.2, and K(ir)2.3 within spontaneously bursting neurons. Importantly, Ba²âº application unmasked rhythmic burst firing in ∼42% of nonbursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst firing within lamina I was enhanced in the presence of high internal concentrations of free Mg²âº, consistent with its documented ability to block K(ir) channels from the intracellular side. Collectively, the results indicate that K(ir) channels are key modulators of pacemaker activity in newborn central pain networks.


Assuntos
Relógios Biológicos/fisiologia , Rede Nervosa/fisiologia , Nociceptividade/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Medula Espinal/fisiologia , Fatores Etários , Animais , Células Cultivadas , Feminino , Masculino , Potenciais da Membrana/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
13.
Neuroscientist ; 20(3): 197-202, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24510073

RESUMO

Spontaneous activity is known to be essential for the proper formation of sensory networks in the developing CNS. This activity can be produced by a variety of mechanisms including the presence of "pacemaker" neurons, which can be defined by their intrinsic ability to generate rhythmic bursts of action potential discharge. Recent work has identified pacemaker activity within lamina I of the neonatal rodent spinal cord that emerges from a complex interaction between voltage-dependent and voltage-independent ("leak") ionic conductances, including an important modulatory role for the inward-rectifying K(+) (Kir) channels. The available evidence suggests that lamina I pacemakers are glutamatergic and project extensively throughout the dorsal-ventral axis of the spinal cord, although the identity of their postsynaptic targets has yet to be elucidated. A better understanding of this connectivity could yield valuable insight into the role of the lamina I pacemaker population in the maturation of spinal circuitry underlying nociceptive processing and/or sensorimotor integration.


Assuntos
Relógios Biológicos/fisiologia , Neurônios/fisiologia , Nociceptividade/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Medula Espinal/fisiologia , Animais , Medula Espinal/crescimento & desenvolvimento
14.
J Pain ; : 104609, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885917

RESUMO

While early-life adversity has been associated with a higher risk of developing chronic pain in adulthood, the cellular and molecular mechanisms by which chronic stress during the neonatal period can persistently sensitize developing nociceptive circuits remain poorly understood. Here, we investigate the effects of early-life stress (ELS) on synaptic integration and intrinsic excitability in dynorphin-lineage (DYN) interneurons within the adult mouse superficial dorsal horn (SDH), which are important for inhibiting mechanical pain and itch. The administration of neonatal limited bedding between postnatal days (P)2 and P9 evoked sex-dependent effects on spontaneous glutamatergic signaling, as female SDH neurons exhibited a higher amplitude of miniature excitatory postsynaptic currents (mEPSCs) after ELS, while mEPSC frequency was reduced in DYN neurons of the male SDH. Furthermore, ELS decreased the frequency of miniature inhibitory postsynaptic currents selectively in female DYN neurons. As a result, ELS increased the balance of spontaneous excitation versus inhibition (E:I ratio) in mature DYN neurons of the female, but not male, SDH network. Nonetheless, ELS weakened the total primary afferent-evoked glutamatergic drive onto adult DYN neurons selectively in females, without modifying afferent-evoked inhibitory signaling onto the DYN population. Finally, ELS failed to significantly change the intrinsic membrane excitability of mature DYN neurons in either males or females. Collectively, these data suggest that ELS exerts a long-term influence on the properties of synaptic transmission onto DYN neurons within the adult SDH, which includes a reduction in the overall strength of sensory input onto this important subset of inhibitory interneurons. PERSPECTIVE: This study suggests that chronic stress during the neonatal period influences synaptic function within adult spinal nociceptive circuits in a sex-dependent manner. These findings yield new insight into the potential mechanisms by which early-life adversity might shape the maturation of pain pathways in the central nervous system (CNS).

15.
PLoS One ; 19(3): e0300282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483883

RESUMO

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Assuntos
Dinorfinas , Proteína Vermelha Fluorescente , Corno Dorsal da Medula Espinal , Camundongos , Animais , Medula Espinal/metabolismo , Camundongos Transgênicos , Interneurônios/metabolismo , Células do Corno Posterior/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo
16.
Cell Rep ; 43(3): 113829, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421871

RESUMO

The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.


Assuntos
Núcleos Parabraquiais , Medula Espinal , Camundongos , Animais , Medula Espinal/fisiologia , Tálamo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Vias Neurais/fisiologia
17.
Pain ; 164(4): 905-917, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149785

RESUMO

ABSTRACT: The periaqueductal gray (PAG) represents a key target of projection neurons residing in the spinal dorsal horn. In comparison to lamina I spinoparabrachial neurons, little is known about the intrinsic and synaptic properties governing the firing of spino-PAG neurons, or whether such activity is modulated by neonatal injury. In this study, this issue was addressed using ex vivo whole-cell patch clamp recordings from lamina I spino-PAG neurons in adult male and female FVB mice after hindpaw incision at postnatal day (P)3. Spino-PAG neurons were classified as high output, medium output, or low output based on their action potential discharge after dorsal root stimulation. The high-output subgroup exhibited prevalent spontaneous burst firing and displayed initial burst or tonic patterns of intrinsic firing, whereas low-output neurons showed little spontaneous activity. Interestingly, the level of dorsal root-evoked firing significantly correlated with the resting potential and membrane resistance but not with the strength of primary afferent-mediated glutamatergic drive. Neonatal incision failed to alter the pattern of monosynaptic sensory input, with most spino-PAG neurons receiving direct connections from low-threshold C-fibers. Furthermore, primary afferent-evoked glutamatergic input and action potential discharge in adult spino-PAG neurons were unaltered by neonatal surgical injury. Finally, Hebbian long-term potentiation at sensory synapses, which significantly increased afferent-evoked firing, was similar between P3-incised and naive littermates. Collectively, these data suggest that the functional response of lamina I spino-PAG neurons to sensory input is largely governed by their intrinsic membrane properties and appears resistant to the persistent influence of neonatal tissue damage.


Assuntos
Interneurônios , Corno Dorsal da Medula Espinal , Animais , Camundongos , Feminino , Masculino , Animais Recém-Nascidos , Potenciais da Membrana/fisiologia , Fibras Nervosas Amielínicas , Medula Espinal
18.
Neuroscience ; 526: 290-304, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37437798

RESUMO

Stress evokes age-dependent effects on pain sensitivity and commonly occurs during adolescence. However, the mechanisms linking adolescent stress and pain remain poorly understood, in part due to a lack of information regarding how stress hormones modulate the function of nociceptive circuits in the adolescent CNS. Here we investigate the short- and long-term effects of corticosterone (CORT) on the excitability of GABAergic and presumed glutamatergic neurons of the spinal superficial dorsal horn (SDH) in Gad1-GFP mice at postnatal days (P)21-P34. In situ hybridization revealed that glutamatergic SDH neurons expressed significantly higher mRNA levels of both glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) compared to adjacent GABAergic neurons. The incubation of spinal cord slices with CORT (90 min) evoked select long-term changes in spontaneous synaptic transmission across both cell types in a sex-dependent manner, without altering the intrinsic firing of either Gad1-GFP+ or GFP- neurons. Meanwhile, the acute bath application of CORT significantly decreased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as the frequency of miniature inhibitory postsynaptic currents (mIPSCs), in both cell types leading to a net reduction in the balance of spontaneous excitation vs. inhibition (E:I ratio). This CORT-induced reduction in the E:I ratio was not prevented by selective antagonists of either GR (mifepristone) or MR (eplerenone), although eplerenone blocked the effect on mEPSC amplitude. Collectively, these data suggest that corticosterone modulates synaptic function within the adolescent SDH which could influence the overall excitability and output of the spinal nociceptive network.


Assuntos
Corticosterona , Corno Dorsal da Medula Espinal , Camundongos , Animais , Corticosterona/farmacologia , Eplerenona/farmacologia , Transmissão Sináptica/fisiologia , Células do Corno Posterior , Dor , Neurônios GABAérgicos
19.
J Pain ; 24(8): 1321-1336, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37019165

RESUMO

Clinical association studies have identified early-life iron deficiency (ID) as a risk factor for the development of chronic pain. While preclinical studies have shown that early-life ID persistently alters neuronal function in the central nervous system, a causal relationship between early-life ID and chronic pain has yet to be established. We sought to address this gap in knowledge by characterizing pain sensitivity in developing male and female C57Bl/6 mice that were exposed to dietary ID during early life. Dietary iron was reduced by ∼90% in dams between gestational day 14 and postnatal day (P)10, with dams fed an ingredient-matched, iron-sufficient diet serving as controls. While cutaneous mechanical and thermal withdrawal thresholds were not altered during the acute ID state at P10 and P21, ID mice were more sensitive to mechanical pressure at P21 independent of sex. During adulthood, when signs of ID had resolved, mechanical and thermal thresholds were similar between early-life ID and control groups, although male and female ID mice displayed increased thermal tolerance at an aversive (45 °C) temperature. Interestingly, while adult ID mice showed decreased formalin-induced nocifensive behaviors, they showed exacerbated mechanical hypersensitivity and increased paw guarding in response to hindpaw incision in both sexes. Collectively, these results suggest that early-life ID elicits persistent changes in nociceptive processing and appears capable of priming developing pain pathways. PERSPECTIVE: This study provides novel evidence that early-life ID evokes sex-independent effects on nociception in developing mice, including an exacerbation of postsurgical pain during adulthood. These findings represent a critical first step towards the long-term goal of improving health outcomes for pain patients with a prior history of ID.


Assuntos
Dor Crônica , Deficiências de Ferro , Camundongos , Animais , Masculino , Feminino , Nociceptividade , Dor Crônica/etiologia , Dor Crônica/metabolismo , Neurônios/metabolismo , Limiar da Dor/fisiologia , Ferro/metabolismo , Animais Recém-Nascidos
20.
Biol Psychiatry Glob Open Sci ; 3(2): 274-282, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124346

RESUMO

Background: Adolescent brains are sensitive to stressors. However, under certain circumstances, developmental stress can promote an adaptive phenotype, allowing individuals to cope better with adverse situations in adulthood, thereby contributing to resilience. Methods: Sprague Dawley rats (50 males, 48 females) were subjected to adolescent chronic variable stress (adol CVS) for 2 weeks at postnatal day 45. At postnatal day 85, a group was subjected to single prolonged stress (SPS). After a week, animals were evaluated in an auditory-cued fear conditioning paradigm, and neuronal recruitment during reinstatement was assessed by Fos expression. Patch clamp electrophysiology (17-35 cells/group) was performed in male rats to examine physiological changes associated with resilience. Results: Adol CVS blocked fear potentiation evoked by SPS. We observed that SPS impaired extinction (males) and enhanced reinstatement (both sexes) of the conditioned freezing response. Prior adol CVS prevented both effects. SPS effects were associated with a reduction of infralimbic (IL) cortex neuronal recruitment after reinstatement in males and increased engagement of the central amygdala in females, both also prevented by adol CVS, suggesting different neurocircuits involved in generating resilience between sexes. We explored the mechanism behind reduced IL recruitment in males by studying the intrinsic excitability of IL pyramidal neurons. SPS reduced excitability of IL neurons, and prior adol CVS prevented this effect. Conclusions: Our data indicate that adolescent stress can impart resilience to the effects of traumatic stress on neuroplasticity and behavior. Our data provide a mechanistic link behind developmental stress-induced behavioral resilience and prefrontal (IL) cortical excitability in males.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA