Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Vet Res ; 15(1): 168, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126297

RESUMO

BACKGROUND: Seneca Valley virus (SVV) has emerged in multiple countries in recent years. SVV infection can cause vesicular lesions clinically indistinguishable from those caused by other vesicular disease viruses, such as foot-and-mouth disease virus (FMDV), swine vesicular disease virus (SVDV), vesicular stomatitis virus (VSV), and vesicular exanthema of swine virus (VESV). Sensitive and specific RT-PCR assays for the SVV detection is necessary for differential diagnosis. Real-time RT-PCR (rRT-PCR) has been used for the detection of many RNA viruses. The insulated isothermal PCR (iiPCR) on a portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, SVV rRT-PCR and RT-iiPCR were developed and validated. RESULTS: Neither the SVV rRT-PCR nor the RT-iiPCR cross-reacted with any of the vesicular disease viruses (20 FMDV, two SVDV, six VSV, and two VESV strains), classical swine fever virus (four strains), and 15 other common swine viruses. Analytical sensitivities of the SVV rRT-PCR and RT-iiPCR were determined using serial dilutions of in vitro transcribed RNA as well as viral RNA extracted from a historical SVV isolate and a contemporary SVV isolate. Diagnostic performances were further evaluated using 125 swine samples by two approaches. First, nucleic acids were extracted from the 125 samples using the MagMAX™ kit and then tested by both RT-PCR methods. One sample was negative by the rRT-PCR but positive by the RT-iiPCR, resulting in a 99.20% agreement (124/125; 95% CI: 96.59-100%, κ = 0.98). Second, the 125 samples were tested by the taco™ mini extraction/RT-iiPCR and by the MagMAX™ extraction/rRT-PCR system in parallel. Two samples were positive by the MagMAX™/rRT-PCR system but negative by the taco™ mini/RT-iiPCR system, resulting in a 98.40% agreement (123/125; 95% CI: 95.39-100%, κ = 0.97). The two samples with discrepant results had relatively high CT values. CONCLUSIONS: The SVV rRT-PCR and RT-iiPCR developed in this study are very sensitive and specific and have comparable diagnostic performances for SVV RNA detection. The SVV rRT-PCR can be adopted for SVV detection in laboratories. The SVV RT-iiPCR in a simple field-deployable system could serve as a tool to help diagnose vesicular diseases in swine at points of need.


Assuntos
Picornaviridae/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Doenças dos Suínos/virologia , Animais , Variação Genética , Picornaviridae/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/diagnóstico
2.
J Vet Diagn Invest ; 30(6): 807-812, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30284505

RESUMO

We evaluated effects of handling procedures on detection of porcine reproductive and respiratory syndrome virus (PRRSV) in oral fluids (OFs) by reverse-transcription real-time PCR (RT-rtPCR). The experiments were conducted using a composite sample of PRRSV-positive OF collected from 5-wk-old pigs vaccinated 15 d earlier with a modified-live PRRSV vaccine. Five pre-extraction sample-handling steps and all combinations thereof were evaluated: 1) thaw temperature (4°C or 25°C); 2) sample diluent (1:1 dilution with nuclease-free water or guanidinium thiocyanate-phenol); 3a) sonication of the sample (yes or no); 3b) temperature (4°C or 25°C) at which step 3a was conducted; and 4) temperature at which the sample was maintained after step 3b and until RNA extraction was initiated (4°C or 25°C). All combinations of the 5 sample-handling steps (i.e., 32 unique treatments) were tested in a completely randomized factorial design with 4 replicates and 1 negative control for each treatment. The entire experiment was repeated on 5 separate days to produce a total of 800 PRRSV RT-rtPCR results. Binary (positive or negative) data were analyzed by logistic regression and results (Ct) were analyzed using a generalized linear model. Overall, 1 false-positive result was observed among 160 negative controls (99.4% specificity), and 85 false-negative results were observed among the 640 known-positive samples (86.7% sensitivity). The most significant factor affecting test outcome was thaw temperature (4°C or 25°C); samples thawed at 4°C had higher positivity rate (94% vs. 80%, p < 0.0001) and lower Ct (36.2 vs. 37.5, p < 0.0001).


Assuntos
Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Saliva/virologia , Manejo de Espécimes/veterinária , Animais , Modelos Lineares , Modelos Logísticos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Manejo de Espécimes/métodos , Suínos
3.
J Vet Diagn Invest ; 29(1): 41-50, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28074712

RESUMO

Next-generation sequencing (NGS) technologies have increasingly played crucial roles in biological and medical research, but are not yet in routine use in veterinary diagnostic laboratories. We developed and applied a procedure for high-throughput RNA sequencing of Porcine reproductive and respiratory syndrome virus (PRRSV) from cell culture-derived isolates and clinical specimens. Ten PRRSV isolates with known sequence information, 2 mixtures each with 2 different PRRSV isolates, and 51 clinical specimens (19 sera, 16 lungs, and 16 oral fluids) with various PCR threshold cycle (Ct) values were subjected to nucleic acid extraction, cDNA library preparation (24-plexed), and sequencing. Whole genome sequences were obtained from 10 reference isolates with expected sequences and from sera with a PRRSV real-time reverse transcription PCR Ct ≤ 23.6, lung tissues with Ct ≤ 21, and oral fluids with Ct ≤ 20.6. For mixtures with PRRSV-1 and -2 isolates (57.8% nucleotide identity), NGS was able to distinguish them as well as obtain their respective genome sequences. For mixtures with 2 PRRSV-2 isolates (92.4% nucleotide identity), sequence reads with nucleotide ambiguity at numerous sites were observed, indicating mixed infection; however, individual virus sequences could only be separated when 1 isolate identity and sequence in the mixture is known. The NGS approach described herein offers the prospect of high-throughput sequencing and could be adapted to routine workflows in veterinary diagnostic laboratories, although further improvement of sequencing outcomes from clinical specimens with higher Ct values remains to be investigated.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Animais , Genoma Viral , Reação em Cadeia da Polimerase/veterinária , Síndrome Respiratória e Reprodutiva Suína/sangue , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Valor Preditivo dos Testes , RNA Viral/análise , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA