RESUMO
Oxidative stress, a driver of liver pathology, remains a challenge in clinical management, necessitating innovative approaches. In this research, we delved into the therapeutic potential of polyphenols for oxidative liver injury using a multiscale network analysis framework. From the Phenol-Explorer database, we curated a list of polyphenols along with their corresponding PubChem IDs. Verified target information was then collated from multiple databases. We subsequently measured the propagative effects of these compounds and prioritized a ranking based on their correlation scores for oxidative liver injury. This result underwent evaluation to discern its effectiveness in differentiating between known and unknown polyphenols, demonstrating superior performance over chance level in distinguishing these compounds. We found that lariciresinol and isopimpinellin yielded high correlation scores in relation to oxidative liver injury without reported evidence. By analyzing the impact on a multiscale network, we found that lariciresinol and isopimpinellin were predicted to offer beneficial effects on the disease by directly acting on targets such as CASP3, NR1I2, and CYP3A4 or by modulating biological functions related to the apoptotic process and oxidative stress. This study not only corroborates the efficacy of identified polyphenols in liver health but also opens avenues for future investigations into their mechanistic actions.
RESUMO
Arecae pericarpium (AP), the fruit peel of the betel palm, is a traditional Oriental herbal medicine. AP is used to treat various diseases and conditions, such as ascites, edema, and urinary retention, in traditional Korean medicine. Recent studies have demonstrated its anti-obesity and antibacterial effects; however, its anti-neuroinflammatory effects have not yet been reported. Therefore, we investigated the anti-neuroinflammatory effects of AP on lipopolysaccharide (LPS)-stimulated mouse microglia in this study. To determine the anti-neuroinflammatory effects of AP on BV2 microglial cells, we examined the production of nitric oxide (NO) using Griess assay and assessed the mRNA expression levels of inflammatory mediators, such as inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, and pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, using a real-time reverse transcription-polymerase chain reaction. Furthermore, we determined the levels of mitogen-activated protein kinases and IκBα via Western blotting to understand the regulating mechanisms of AP. AP treatment decreased NO production in LPS-stimulated BV2 cells. Additionally, AP suppressed the expression of iNOS and COX-2 and the production of pro-inflammatory cytokines. AP also inhibited the activation of p38 and nuclear factor-kappa B (NF-κB) in LPS-stimulated BV2 cells. Therefore, AP exerts anti-neuroinflammatory effects via inactivation of the p38 and NF-κB pathways.
RESUMO
Background and Objectives: Diabetes can cause various vascular complications. The Compounded Danshen-Dripping-Pill (CDDP) is widely used in China. This study aimed to analyze the effectiveness and safety of CDDP in the blood viscosity (BV) with type 2 diabetes mellitus (T2DM). Materials and Methods: We conducted a systematic search of seven databases from their inception to July 2022 for randomized controlled trials that used CDDP to treat T2DM. To evaluate BV, we measured low shear rate (LSR), high shear rate (HSR), and plasma viscosity (PV). Homocysteine and adiponectin levels were also assessed as factors that could affect BV. Results: We included 18 studies and 1532 patients with T2DM. Meta-analysis revealed that CDDP significantly reduced LSR (mean difference [MD] -2.74, 95% confidence interval [CI] -3.77 to -1.72), HSR (MD -0.86, 95% CI -1.08 to -0.63), and PV (MD -0.37, 95% CI -0.54 to -0.19) compared to controls. CDDP also reduced homocysteine (MD -8.32, 95% CI -9.05 to -7.58), and increased plasma adiponectin (MD 2.72, 95% CI 2.13 to 3.32). Adverse events were reported less frequently in the treatment groups than in controls. Conclusions: CDDP is effective in reducing BV on T2DM. However, due to the poor design and quality of the included studies, high-quality, well-designed studies are required in the future.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Humanos , Diabetes Mellitus Tipo 2/complicações , Cardiotônicos , Viscosidade Sanguínea , Adiponectina , Medicamentos de Ervas Chinesas/efeitos adversos , Doenças Cardiovasculares/complicações , HomocisteínaRESUMO
Acute kidney injury (AKI) is a major side effect of cisplatin, a crucial anticancer agent. Therefore, it is necessary to develop drugs to protect against cisplatin-induced nephrotoxicity. Ojeoksan (OJS), a traditional blended herbal prescription, is mostly used in Korea; however, there are no reports on the efficacy of OJS against cisplatin-induced AKI. To investigate the reno-protective effect of OJS on AKI, we orally administered 50, 100, and 200 mg/kg of OJS to mice 1 h before intraperitoneal injection with 20 mg/kg of cisplatin. OJS inhibited the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels and reduced histological changes in the kidney, like loss of brush borders, renal tubular necrosis, and cast formation. Administration of OSJ reduced the levels of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. In addition, OJS inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways in cisplatin-induced AKI. These results suggest that OJS attenuates cisplatin-induced AKI by downregulating the MAPK and NF-κB pathways.
Assuntos
Injúria Renal Aguda , Antineoplásicos , Camundongos , Animais , NF-kappa B/metabolismo , Cisplatino/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Creatinina , Interleucina-6/metabolismo , Transdução de Sinais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Antineoplásicos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismoRESUMO
Acute pancreatitis (AP) is an inflammatory disorder, involving acinar cell death and the release of inflammatory cytokines. Currently, there are limited effective therapeutic agents for AP. Betulinic acid (BA) is a pentacyclic triterpenoid extracted from Betula platyphylla that has been shown to have anti-inflammatory effects. In this study, we aimed to investigate the effects of BA on AP and elucidate the potential underlying mechanisms. AP was induced in mice through six intraperitoneal injections of cerulein. After the last cerulein injection, the mice were sacrificed. Our results revealed that pre- and post-treatment with BA significantly reduced the severity of pancreatitis, as evidenced by a decrease in histological damage in the pancreas and lung, serum amylase and lipase activity and pancreatic myeloperoxidase activity. Furthermore, BA pretreatment reduced proinflammatory cytokine production, augmentation of chemokines, and infiltration of macrophages and neutrophils in the pancreas of AP mice. In addition, mice that were pretreated with BA showed a reduction in Iκ-Bα degradation and nuclear factor-kappa B (NF-κB) binding activity in the pancreas. Moreover, BA reduced the production of proinflammatory cytokines and NF-κB activation in pancreatic acinar cells (PACs). These findings suggest that BA may have prophylactic and therapeutic effects on AP via inhibition of the NF-κB signaling pathway.
Assuntos
Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Pancreatite/tratamento farmacológico , Triterpenos Pentacíclicos/uso terapêutico , Amilases/sangue , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Lipase/sangue , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Triterpenos Pentacíclicos/farmacologia , Peroxidase/metabolismo , Transdução de Sinais , Ácido BetulínicoRESUMO
Cisplatin is the most widely used chemotherapeutic agent. However, it often causes nephrotoxicity, which results in acute kidney injury (AKI). Therefore, we urgently need a drug that can reduce the nephrotoxicity induced by cisplatin. Loganin is a major iridoid glycoside isolated from Corni fructus that has been used as an anti-inflammatory agent in various pathological models. However, the renal protective activity of loganin remains unclear. In this study, to examine the protective effect of loganin on cisplatin-induced AKI, male C57BL/6 mice were orally administered with loganin (1, 10, and 20 mg/kg) 1 h before intraperitoneal injection of cisplatin (10 mg/kg) and sacrificed at three days after the injection. The administration of loganin inhibited the elevation of blood urea nitrogen (BUN) and creatinine (CREA) in serum, which are used as biomarkers of AKI. Moreover, histological kidney injury, proximal tubule damages, and renal cell death, such as apoptosis and ferroptosis, were reduced by loganin treatment. Also, pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, reduced by loganin treatment. Furthermore, loganin deactivated the extracellular signal-regulated kinases (ERK) 1 and 2 during AKI. Taken together, our results suggest that loganin may attenuate cisplatin-induced AKI through the inhibition of ERK1/2.
Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Iridoides/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Morte Celular/efeitos dos fármacos , Creatinina/sangue , Citocinas/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Lupeol is a triterpenoid commonly found in fruits and vegetables and is known to exhibit a wide range of biological activities, including antiinflammatory and anti-cancer effects. However, the effects of lupeol on acute pancreatitis specifically have not been well characterized. Here, we investigated the effects of lupeol on cerulein-induced acute pancreatitis in mice. Acute pancreatitis was induced via an intraperitoneal injection of cerulein (50 µg/kg). In the lupeol treatment group, lupeol was administered intraperitoneally (10, 25, or 50 mg/kg) 1 h before the first cerulein injection. Blood samples were taken to determine serum cytokine and amylase levels. The pancreas was rapidly removed for morphological examination and used in the myeloperoxidase assay, trypsin activity assay, and real-time reverse transcription polymerase chain reaction. In addition, we isolated pancreatic acinar cells using a collagenase method to examine the acinar cell viability. Lupeol administration significantly attenuated the severity of pancreatitis, as was shown by reduced pancreatic edema, and neutrophil infiltration. In addition, lupeol inhibited elevation of digestive enzymes and cytokine levels, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and interleukin (IL)-6. Furthermore, lupeol inhibited the cerulein-induced acinar cell death. In conclusion, these results suggest that lupeol exhibits protective effects on cerulein-induced acute pancreatitis.
Assuntos
Anti-Inflamatórios/farmacologia , Ceruletídeo , Pancreatite/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais , Doença Aguda , Amilases , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Injeções Intraperitoneais , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pancreatite/induzido quimicamente , Peroxidase/metabolismo , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The influenza A virus poses a serious threat to human health and is an important global public health issue. The drugs currently used for treatment are becoming increasingly ineffective against influenza A viruses and require the development of new antiviral drugs. Angelica tenuissima Nakai (ATN), a traditional herbal medicine belonging to the Umbelliferae family, exhibits a broad range of pharmacological activities, including inflammation, headache, and cold symptoms. In the present study, based on target protein identification, functional enrichment analysis, and gene set comparisons, we first suggested that ATN has potential therapeutic effects against influenza A virus infection. Next, methylthiazol tetrazolium (MTT) and sulforhodamine B colorimetric (SRB) assay results revealed that ATN exhibited low cytotoxicity in Madin-Darby canine kidney (MDCK) cells. The antiviral properties of ATN were observed against H1N1 and H3N2 virus strains. Microscopy confirmed the increased survival rate of the host cells. Further time-of-addition experiments revealed that the addition of ATN before virus adsorption showed similar results to the whole period of treatment. The pre- and co-treated groups showed lower levels of viral RNA (M1 protein). The results of this study suggest that ATN exhibits antiviral properties against the influenza A virus. These therapeutic properties of ATN can serve as a theoretical basis for further research on the applicability of ATN in the development of antiviral agents.
RESUMO
BACKGROUND: Lipopolysaccharide (LPS)-induced neuroinflammation is a well-established model for studying depression-like behavior, driven by pro-inflammatory cytokines such as TNF-α and IL-1ß. Mast cells (MCs) contribute to neuroinflammation by releasing mediators that exacerbate depressive-like symptoms. This study evaluates the antidepressant-like and anti-inflammatory effects of Cannabis sativa L. inflorescence extract (CSL) in an LPS-induced neuroinflammation model. METHODS: Male C57BL/6 mice were intraperitoneally injected with CSL at doses of 10, 20, and 30 mg/kg, 30 min prior to LPS (0.83 mg/kg) administration. Depressive behaviors were assessed using the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). The neutrophil-to-lymphocyte ratio (NLR) was measured to assess systemic inflammation. Cytokine levels in the prefrontal cortex (PFC) were measured, and mast cell degranulation in the lymph nodes and dura mater was analyzed histologically (approval number: WKU24-64). RESULTS: CSL significantly improved depressive-like behaviors and decreased the NLR, indicating reduced systemic inflammation. CSL also significantly reduced TNF-α and IL-1ß levels in the PFC. Furthermore, CSL inhibited MC degranulation in the deep cervical lymph nodes and dura mater, with the strongest effects observed at 30 mg/kg. CONCLUSIONS: CSL demonstrated antidepressant-like and anti-inflammatory effects in an LPS-induced neuroinflammation model, likely through the modulation of cytokine expression and mast cell activity. These results suggest the potential of CSL as a therapeutic option for treating inflammation-related depression.
RESUMO
Cannabis sativa L. has been widely used by humans for centuries for various purposes, such as industrial, ceremonial, medicinal, and food. The bioactive components of Cannabis sativa L. can be classified into two main groups: cannabinoids and terpenes. These bioactive components of Cannabis sativa L. leaf and inflorescence extracts were analyzed. Mice were systemically administered 30 mg/kg of Cannabis sativa L. leaf extract 1 h before lipopolysaccharide (LPS) administration, and behavioral tests were performed. We conducted an investigation into the oxygen saturation, oxygen tension, and degranulation of mast cells (MCs) in the deep cervical lymph nodes (DCLNs). To evaluate the anti-inflammatory effect of Cannabis sativa L. extracts in BV2 microglial cells, we assessed nitrite production and the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. The main bioactive components of the Cannabis sativa L. extracts were THCA (a cannabinoid) and ß-caryophyllene (a terpene). Cannabis sativa L. leaf extract reduced the immobility time in the forced swimming test and increased sucrose preference in the LPS model, without affecting the total distance and time in the center in the open field test. Additionally, Cannabis sativa L. leaf extract improved oxygen levels and inhibited the degranulation of MCs in DCLNs. The Cannabis sativa L. extracts inhibited IL-1ß, IL-6, TNF-α, nitrite, iNOS, and COX-2 expression in BV2 microglia cells. The efficacy of Cannabis sativa L. extracts was suggested to be due to the entourage effect of various bioactive phytochemicals. Our findings indicate that these extracts have the potential to be used as effective treatments for a variety of diseases associated with acute inflammatory responses.
RESUMO
Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/ß-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.
Assuntos
Calcineurina , Catepsina B , Citocinas , Flavonoides , Camundongos Endogâmicos C57BL , Pancreatite , Animais , Pancreatite/tratamento farmacológico , Pancreatite/imunologia , Pancreatite/patologia , Pancreatite/induzido quimicamente , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Citocinas/metabolismo , Catepsina B/metabolismo , Camundongos , Masculino , Calcineurina/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Ceruletídeo , NF-kappa B/metabolismo , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Transdução de Sinais/efeitos dos fármacos , Arginina/metabolismo , Modelos Animais de Doenças , Proteínas Quinases Ativadas por AMP/metabolismoRESUMO
BACKGROUND/AIM: We have previously reported that bee venom (BV) has a protective role against acute pancreatitis (AP). However, the effects of apamin, the major compound of BV, on AP have not been determined. The aim of this study was to evaluate the effects of apamin on cerulein-induced AP. METHODS: AP was induced via intraperitoneal injection of supramaximal concentrations of the stable cholecystokinin analogue cerulein (50 µg/kg) every hour for 6 times. In the apamin treatment group, apamin was administered subcutaneously (10, 50, or 100 µg/kg) at both 18 and 1 h before the first cerulein injection. The mice were sacrificed at 6 h after the final cerulein injection. Blood samples were obtained to determine serum amylase and lipase levels, as well as cytokine production. The pancreas and lung were rapidly removed for morphologic and histological examination, myeloperoxidase (MPO) assay, and real-time reverse transcription-polymerase chain reaction. Furthermore, we isolated the pancreatic acinar cells to specify the role of apamin in AP. RESULTS: Pre-treatment with apamin inhibited histological damage, pancreatic weight/body weight ratio, serum level of amylase and lipase, MPO activity, and cytokine production. In addition, apamin treatment significantly inhibited cerulein-induced pancreatic acinar cell death. Furthermore, apamin treatment inhibited the cerulein-induced activation of c-Jun NH2-terminal kinases (JNK). CONCLUSIONS: These results could suggest that apamin could protect against AP by inhibition of JNK activation.
Assuntos
Apamina/farmacologia , Apamina/uso terapêutico , Ceruletídeo/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pancreatite/induzido quimicamente , Pancreatite/prevenção & controle , Doença Aguda , Animais , Apamina/administração & dosagem , Ceruletídeo/administração & dosagem , Colecistocinina/análogos & derivados , Citocinas/metabolismo , Modelos Animais de Doenças , Injeções Intraperitoneais , Injeções Subcutâneas , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologiaRESUMO
Guggulsterone (GS) is a phytosterol used to treat inflammatory diseases. Although many studies have examined the anti-inflammatory activities of GS, the detailed mechanisms of GS in lipopolysaccharide (LPS)-induced inflammation and endotoxemia have not yet been examined. Therefore, we investigated the anti-inflammatory effects of GS on LPS-induced inflammation. In murine peritoneal macrophages, the anti-inflammatory activity of GS was primarily mediated by heme oxygenase-1 (HO-1) induction. HO-1 induction by GS was mediated by GSH depletion and reactive oxygen species (ROS) production. The ROS generated by GS caused the phosphorylation of GSK3ß (ser9/21) and p38, leading to the translocation of nuclear factor erythroid-related factor 2 (Nrf2), which ultimately induced HO-1. In addition, GS pretreatment significantly inhibited inducible nitric oxide synthase (iNOS), iNOS-derived NO, and COX-2 protein and mRNA expression, and production of COX-derived prostaglandin PGE2, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α). In a mouse model of endotoxemia, GS treatment prolonged survival and inhibited the expression of inflammatory mediators, including IL-1ß, IL-6, and TNF-α. GS treatment also inhibited LPS-induced liver injury. These results suggest that GS-induced HO-1 could exert anti-inflammatory effects via ROS-dependent GSK (ser21/9)-p38 phosphorylation and nuclear translocation of Nrf2.
Assuntos
Endotoxemia , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismoRESUMO
Chronic pancreatitis (CP) is a pancreatic inflammatory disease associated with histological changes, including fibrosis, acinar cell loss and immune cell infiltration, and leads to damage of the pancreas, which results in pain, weight loss and loss of pancreas function. Catechin or catechin hydrate (CH) has antioxidant, anticancer and immuneregulatory effects. However, unlike other catechins, the antifibrotic effects of (+)CH have not been widely studied in many diseases, including CP. Therefore, the antifibrotic effects of (+)CH against CP were evaluated in the present study. To assess the prophylactic effects of CH, (+)CH (1, 5 or 10 mg/kg) or ethanol was administered 1 h before first cerulein (50 µg/kg) injection. To assess the therapeutic effects, (+)CH (5 mg/kg) or ethanol was administered after cerulein injection for one or two weeks. In both methods, cerulein was injected intraperitoneally into mice once every hour, six times a day, four times a week, for a total of three weeks, to induce CP. The data showed that (+)CH markedly inhibited glandular destruction and inflammation during CP. Moreover, (+)CH prevented pancreatic stellate cell (PSC) activation and the production of extracellular matrix components, such as fibronectin 1 and collagens, which suggested that it may act as a novel therapeutic agent. Furthermore, the mechanism and effectiveness of (+)CH on pancreatic fibrosis were investigated in isolated PSCs. (+)CH suppressed the activation of Smad2 and fibrosis factors that act through transforming growth factorß (TGFß) or plateletderived growth factor. These findings suggest that (+)CH exhibits antifibrotic effects in ceruleininduced CP by inactivating TGFß/Smad2 signaling.
Assuntos
Catequina , Pancreatopatias , Pancreatite Crônica , Animais , Camundongos , Catequina/farmacologia , Ceruletídeo , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/tratamento farmacológico , Pâncreas , Etanol/efeitos adversosRESUMO
Myrrh has been used as an antibacterial and anti-inflammatory agent. However, effect of myrrh on peritoneal macrophages and clinically relevant models of septic shock, such as cecal ligation and puncture (CLP), is not well understood. Here, we investigated the inhibitory effect and mechanism(s) of myrrh on inflammatory responses. Myrrh inhibited LPS-induced productions of inflammatory mediators such as nitric oxide, prostaglandin E(2), and tumor necrosis factor-α but not of interleukin (IL)-1ß and IL-6 in peritoneal macrophages. In addition, Myrrh inhibited LPS-induced activation of c-jun NH(2)-terminal kinase (JNK) but not of extracellular signal-regulated kinase (ERK), p38, and nuclear factor-κB. Administration of Myrrh reduced the CLP-induced mortality and bacterial counts and inhibited inflammatory mediators. Furthermore, administration of Myrrh attenuated CLP-induced liver damages, which were mainly evidenced by decreased infiltration of leukocytes and aspartate aminotransferase/alanine aminotransferase level. Taken together, these results provide the evidence for the anti-inflammatory and antibacterial potential of Myrrh in sepsis.
RESUMO
Piperine, one of the main components of Piper longum Linn. and P. nigrum Linn., is a plant alkaloid with a long history of medicinal use. Piperine has been shown to modulate the immune response, but the mechanism underlying this modulation remains unknown. Here, we examined the effects of piperine on lipopolysaccharide (LPS)-induced inflammatory responses in bone-marrow-derived dendritic cells (BMDCs). Piperine significantly inhibited the expression of major histocompatibility complex class II, CD40 and CD86 in BMDCs in a dose-dependent manner. Furthermore, piperine treatment led to an increase in fluorescein-isothiocyanate-dextran uptake in LPS-treated dendritic cells and inhibited the production of tumour necrosis factor alpha and interleukin (IL)-12, but not IL-6. The inhibitory effects of piperine were mediated via suppression of extracellular signal-regulated kinases and c-Jun N-terminal kinases activation, but not p38 or nuclear factor-κB activation. These findings provide insight into the immunopharmacological role of piperine.
Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Fosforilação , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Chronic pancreatitis (CP) is a chronic inflammatory disease of the pancreas with irreversible morphological changes. Arecae pericarpium (ARP), known to improve gastrointestinal disorders, has not yet been reported to inhibit fibrosis in CP. Therefore, we investigated the beneficial effects of ARP on cerulein-induced CP. Cerulein (50 µg/kg) was administered intraperitoneally to mice every hour, six times a day, four times a week for a total of 3 weeks to induce CP. To ascertain the prophylactic effects of ARP, ARP water extract (50, 100, or 200 mg/kg) or saline was administered intraperitoneally 1 h before the onset of CP. To determine the therapeutic effects of ARP, ARP water extract (200 mg/kg) or saline was administered for a total of 1 week or 2 weeks, starting 2 weeks or 1 week after the onset of CP. The pancreas was collected immediately for histological analysis. Additionally, to determine the effectiveness and mechanism of ARP in alleviating pancreatic fibrosis, pancreatic stellate cells (PSCs) were isolated. ARP treatment considerably improved glandular atrophy and inflammation and repressed collagen deposition in the pancreas. Furthermore, ARP water extract inhibited extracellular matrix (ECM) constituents such as alpha-smooth muscle actin (α-SMA), collagen I, and fibronectin 1 (FN1) in pancreatic tissue and PSCs. ARP also suppressed transforming growth factor-ß (TGF-ß) signaling by inhibiting Smad2 phosphorylation. Our study suggests that ARP exhibits anti-fibrotic effects in cerulein-induced CP by inhibiting TGF-ß/Smad signaling.
RESUMO
Chronic pancreatitis (CP) is a pathological fibroinflammatory syndrome of the pancreas. Currently, there are no therapeutic agents available for treating CP-associated pancreatic fibrosis. Fraxinus rhynchophylla (FR) reportedly exhibits anti-inflammatory, antioxidative and antitumor activities. Although FR possesses numerous properties associated with the regulation of diverse diseases, the effects of FR on CP remain unknown. Herein, we examined the effects of FR on CP. For CP induction, mice were intraperitoneally administered cerulein (50 µg/kg) 6 times a day, 4 days per week for 3 weeks. FR extract (100 or 400 mg/kg) or saline (control group) was intraperitoneally injected 1 hour before the first cerulein injection. After 3 weeks, the pancreas was harvested for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the antifibrogenic effects and regulatory mechanisms of FR. Administration of FR significantly inhibited histological damage in the pancreas, increased pancreatic acinar cell survival, decreased PSC activation and collagen deposition, and decreased pro-inflammatory cytokines. Moreover, FR treatment inhibited the expression of fibrotic mediators, such as α-smooth muscle actin (α-SMA), collagen, fibronectin 1, and decreased pro-inflammatory cytokines in isolated PSCs stimulated with transforming growth factor (TGF)-ß. Furthermore, FR treatment suppressed the phosphorylation of Smad 2/3 but not of Smad 1/5 in TGF-ß-stimulated PSCs. Collectively, these results suggest that FR ameliorates pancreatic fibrosis by inhibiting PSC activation during CP.
Assuntos
Fraxinus , Pancreatite Crônica , Animais , Ceruletídeo/metabolismo , Ceruletídeo/farmacologia , Ceruletídeo/uso terapêutico , Colágeno/metabolismo , Colágeno/farmacologia , Colágeno/uso terapêutico , Fibrose , Humanos , Camundongos , Pâncreas/patologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Casca de Planta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismoRESUMO
Acute pancreatitis (AP) is an inflammatory disease involving acinar cell injury and rapid production and release of inflammatory cytokines, which play a dominant role in local pancreatic inflammation and systemic complications. 2',4',6'-Tris (methoxymethoxy) chalcone (TMMC), a synthetic chalcone derivative, displays potent anti-inflammatory effects. Therefore, we aimed to investigate whether TMMC might affect the severity of AP and pancreatitis-associated lung injury in mice. We used the cerulein hyperstimulation model of AP. Severity of pancreatitis was determined in cerulein-injected mice by histological analysis and neutrophil sequestration. The pretreatment of mice with TMMC reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (activity of amylase, lipase, trypsin, trypsinogen, and myeloperoxidase and production of proinflammatory cytokines). In addition, TMMC inhibited pancreatic acinar cell death and production of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 by inhibiting NF-κB and extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation. Neutralizing antibodies for TNF-α, IL-1ß, and IL-6 inhibited cerulein-induced cell death in isolated pancreatic acinar cells. Moreover, pharmacological blockade of NF-κB/ERK1/2 reduced acinar cell death and production of TNF-α, IL-1ß, and IL-6 in isolated pancreatic acinar cells. In addition, posttreatment of mice with TMMC showed reduced severity of AP and lung injury. Our results suggest that TMMC may reduce the complications associated with pancreatitis.
Assuntos
Anti-Inflamatórios/uso terapêutico , Chalconas/uso terapêutico , Lesão Pulmonar/prevenção & controle , Pancreatite/tratamento farmacológico , Amilases/sangue , Animais , Ceruletídeo , Interleucina-1beta/sangue , Interleucina-6/sangue , Lipase/sangue , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/complicações , Pancreatite/patologia , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/sangueRESUMO
Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP.