Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(4): 2871-2883, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666910

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes cognitive impairment. Neuroinflammation induced by activated microglia exacerbates AD. Regulatory T cells (Tregs) play roles in limiting neuroinflammation by converting microglial polarization. Therefore, adoptive Treg therapy is considered an attractive option for neurodegenerative disorders. However, the mechanism underlying Treg therapy via microglial modulation is not fully understood. In this study, we sought to determine whether adoptively transferred Tregs were effective when microglia proliferation was inhibited by using GW2580, which is an inhibitor of CSF1R. We found that inhibition of microglial proliferation during Treg transfer did not alter the therapeutic effects of Tregs on cognitive deficits and the accumulation of Aß and pTAU in 3xTg-AD mice. The expression of pro- and anti-inflammatory markers in the hippocampus of 3xTg mice showed that GW2580 did not affect the inhibition of neuroinflammation by Treg transfer. Additionally, adoptively transferred Tregs were commonly detected in the brain on day 7 after transfer and their levels decreased slowly over 100 days. Our findings suggest that adoptively transferred Tregs can survive longer than 100 days in the brain, suppressing microglial activation and thus alleviating AD pathology. The present study provides valuable evidence to support the prolonged efficacy of adoptive Treg therapy in AD.

2.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255856

RESUMO

The aging global population is placing an increasing burden on healthcare systems, and the social impact of Alzheimer's disease (AD) is on the rise. However, the availability of safe and effective treatments for AD remains limited. Adoptive Treg therapy has been explored for treating neurodegenerative diseases, including AD. To facilitate the clinical application of Treg therapy, we developed a Treg preparation protocol and highlighted the therapeutic effects of Tregs in 5xFAD mice. CD4+CD25+ Tregs, isolated after Aß stimulation and expanded using a G-rex plate with a gas-permeable membrane, were adoptively transferred into 5xFAD mice. Behavioral analysis was conducted using Y-maze and passive avoidance tests. Additionally, we measured levels of Aß, phosphorylated tau (pTAU), and nitric oxide synthase 2 (NOS2) in the hippocampus. Real-time RT-PCR was employed to assess the mRNA levels of pro- and anti-inflammatory markers. Our findings indicate that Aß-specific Tregs not only improved cognitive function but also reduced Aß and pTAU accumulation in the hippocampus of 5xFAD mice. They also inhibited microglial neuroinflammation. These effects were observed at doses as low as 1.5 × 103 cells/head. Collectively, our results demonstrate that Aß-specific Tregs can mitigate AD pathology in 5xFAD mice.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/terapia , Linfócitos T Reguladores , Envelhecimento , Placas Ósseas , Cognição
3.
Biomed Pharmacother ; 178: 117246, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096617

RESUMO

Idiopathic pulmonary fibrosis is a progressive lung disease characterized by excessive extracellular matrix accumulation and myofibroblast proliferation with limited treatment options available. M2 macrophages are pivotal in pulmonary fibrosis, where they induce the epithelial-to-mesenchymal and fibroblast-to-myofibroblast transitions. In this study, we evaluated whether MEL-dKLA, a hybrid peptide that can eliminate M2 macrophages, could attenuate pulmonary fibrosis in a cell co-culture system and in a bleomycin-induced mouse model. Our findings demonstrated that the removal of M2 macrophages using MEL-dKLA stimulated reprogramming to an antifibrotic environment, which effectively suppressed epithelial-to-mesenchymal and fibroblast-to-myofibroblast transition responses in lung epithelial and fibroblast cells and reduced extracellular matrix accumulation both in vivo and in vitro. Moreover, MEL-dKLA exhibited antifibrotic efficacy without damaging tissue-resident macrophages in the bleomycin-induced mouse model. Collectively, our findings suggest that MEL-dKLA may be a new therapeutic option for the treatment of idiopathic pulmonary fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA