Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(30): 10230-10235, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31116498

RESUMO

Understanding the molecular-level mechanisms of phase transformation in solids is of fundamental interest for functional materials such as zeolites. Two-dimensional (2D) zeolites, when used as shape-selective catalysts, can offer improved access to the catalytically active sites and a shortened diffusion length in comparison with their 3D analogues. However, few materials are known to maintain both their intralayer microporosity and structure during calcination for organic structure-directing agent (SDA) removal. Herein we report that PST-9, a new 2D zeolite which has been synthesized via the multiple inorganic cation approach and fulfills the requirements for true layered zeolites, can be transformed into the small-pore zeolite EU-12 under its crystallization conditions through the single-layer folding process, but not through the traditional dissolution/recrystallization route. We also show that zeolite crystal growth pathway can differ according to the type of organic SDAs employed.

2.
Angew Chem Int Ed Engl ; 55(26): 7369-73, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27174769

RESUMO

Zeolite EU-12, the framework structure of which has remained unsolved during the past 30 years, is synthesized at a specific SiO2 /Al2 O3 ratio using choline as an organic structure-directing agent, with both Na(+) and Rb(+) ions present. Synchrotron powder X-ray diffraction and Rietveld analyses reveal that the EU-12 structure has a two-dimensional 8-ring channel system. Among the two distinct 8-ring (4.6×2.8 and 5.0×2.7 Å) channels along c axis, the smaller one interconnects with the sinusoidal 8-ring (4.8×3.3 Å) channel along a axis. The other large one is simply linked up with the sinusoidal channel by sharing 8-rings (4.8×2.6 Å) in the ac plane. The proton form of EU-12 was found to show a considerably higher ethene selectivity in the low-temperature dehydration of ethanol than H-mordenite, the best catalyst for this reaction.

3.
Chem Commun (Camb) ; 59(7): 852-867, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36598011

RESUMO

The activity and selectivity of acid-catalyzed chemistry is highly dependent on the Brønsted and Lewis acid sites generated by Al substitutions in a zeolite framework with the desired pore architecture. The siting of two Al atoms in close proximity in the framework of high-silica zeolites can also play a decisive role in improving the performance of redox catalysts by producing exchangeable positions for extra-framework multivalent cations. Thus, considerable attention has been devoted to controlling the Al incorporation through direct synthesis approaches and post-synthesis treatments to optimize the performance as (industrial) solid catalysts and to develop new acid- and redox-catalyzed reactions. This Feature Article highlights bottom-up synthetic strategies to fine-tune the Al incorporation in zeolites, interpreted with respect to thermodynamic and kinetic aspects. They include (i) variation in extra-framework components in zeolite synthesis, (ii) isomorphous substitution of other heteroatoms in the zeolite framework, and (iii) control over the (alumino)silicate network in the initial synthesis mixture via in situ and ex situ methods. Most synthetic approaches introduced here tentatively showed that the energy barriers associated with Al incorporation in zeolites can be variable during zeolite crystallization processes, occurring in complex media with multiple chemical interactions. Although the generic interpretation of each strategy and underlying crystallization mechanism remains largely unknown (and often limited to a specific framework), this review will provide guidance on more efficient methods to prepare fine-tuned zeolites with desired chemical properties.

4.
Chem Sci ; 9(40): 7787-7796, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30429987

RESUMO

The host-guest interactions in as-made zeolites Y, UZM-4, UZM-22, offretite, ferrierite, phillipsite, EU-12 and levyne, all of which were synthesized using choline as an organic structure-directing agent, have been investigated by a combination of different experimental techniques, including Raman, 1H-13C CP MAS NMR and variable-temperature IR spectroscopies, together with theoretical calculations. The conformation of this asymmetric quaternary ammonium cation was shown to differ significantly according to the pore topology of the zeolite host and the intrazeolitic location of the organic guest molecule. Theoretical calculations using the pure-silica zeolite model reveal that among its three representative conformers (i.e., gauche, trans and trans' forms), the conformer, which was experimentally found to dominantly or exclusively exist in zeolite structures studied, always has a lower interaction energy with the surrounding zeolite framework. Our work provides the first example in which the conformation of organic structure-directing agents plays an important kinetic role in governing the phase selectivity during zeolite nucleation.

5.
Chem Commun (Camb) ; 54(78): 10997-11000, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30215092

RESUMO

A high-silica (Si/Al = 14) version of zeolite ERS-7 has been synthesized using choline as an organic structure-directing agent (OSDA) via an excess fluoride approach, and the physicochemical properties of this cage-based small-pore material and its catalytic and adsorption properties are evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA