Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 103(1): 26-32, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22967990

RESUMO

Sugar appetite is influenced by unlearned attractions to sweet taste and learned responses to sugars' taste and post-ingestive actions. In rats, sugar-conditioned flavor preferences (CFP) are attenuated by dopamine D1 (SCH23390: SCH), but not by opioid (naltrexone: NTX), receptor antagonism. Sucrose-CFP occurs in BALB/c and SWR inbred mice that differ in their suppressive effects of SCH and NTX on sucrose intake. The present study examined whether SCH and NTX altered expression of previously learned sucrose-CFP and acquisition (learning) of sucrose-CFP in these strains. In Experiment 1, food-restricted mice were trained (10 one-bottle sessions) to drink a more-preferred flavored (e.g., cherry) 16% sucrose solution (CS+/Sucrose) on odd-numbered days, and a less-preferred flavored (e.g., grape) 0.05% saccharin solution (CS-/Saccharin) on even-numbered days. Two-bottle tests with the flavors mixed in 0.2% saccharin occurred 30 min following vehicle (Veh), SCH (50-800 nmol/kg) or NTX (1-5mg/kg) assessing preference expression. CS+ preference expression in BALB/c and SWR mice following Veh were significantly reduced by SCH and NTX. In Experiment 2, separate groups of BALB/c and SWR mice received Veh, SCH (50 nmol/kg) or NTX (1mg/kg) injections 30 min prior to daily one-bottle training sessions with the CS+/Sucrose and CS-/Saccharin solutions assessing preference acquisition. Subsequent two-bottle tests with the CS+ vs. CS- solutions were conducted without injections. CS+/Sucrose training intakes were reduced by SCH in both strains and by NTX in BALB/c mice. In the initial two-bottle test, sucrose-CFP acquisition was significantly reduced in BALB NTX (54%), but not in BALB SCH (77%) groups relative to the BALB Veh group (85%). In contrast, sucrose-CFP acquisition was significantly reduced in SWR SCH (61%), but not in SWR NTX (83%) groups relative to the SWR Veh group (86%). DA D1 and opioid receptor signaling modulate acquisition and/or expression of sucrose-CFP in mice with significant strain differences observed.


Assuntos
Preferências Alimentares/fisiologia , Antagonistas de Entorpecentes , Receptores de Dopamina D1/antagonistas & inibidores , Sacarose , Animais , Benzazepinas/farmacologia , Condicionamento Psicológico , Antagonistas de Dopamina/farmacologia , Aromatizantes , Preferências Alimentares/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos , Sacarose/administração & dosagem , Paladar
2.
Brain Res ; 1316: 51-61, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20026311

RESUMO

Preference for and intake of solid and emulsified fat (intralipid) solutions vary across different mouse strains. Fat intake in rodents is inhibited by dopamine and opioid receptor antagonists, but any variation in these responses as a function of genetic background is unknown. Therefore, the present study compared the ability of dopamine D1-like (SCH23390) and general opioid (naltrexone) receptor antagonism to alter intake of fat emulsions (intralipid) in mice. Two-hour intakes of 5% intralipid were measured (5-120 min) in seven inbred (BALB/c, C57BL/6, C57BL/10, DBA/2, SJL, SWR, 129P3) and one outbred (CD-1) mouse strains following treatment with vehicle, SCH23390 (50-1600 nmol/kg, ip) and naltrexone (0.001-5 mg/kg, sc). SCH23390 significantly, dose-dependently and differentially reduced intralipid intake at all five (DBA/2, SWR, CD-1), four (SJL, C57BL/6), three (129P3) and one (C57BL/10) of the doses tested, but failed to affect intralipid intake in BALB/c mice. Naltrexone significantly, dose-dependently and differentially reduced intralipid intake at all four (DBA/2), three (SWR, SJL), two (CD-1, C57BL/10) and one (C57BL/6, 129P3) of the doses tested, and also failed to affect intralipid intake in BALB/cJ mice. SCH23390 and naltrexone were respectively 13.3-fold and 9.3-fold more potent in inhibiting intralipid intake in the most sensitive (DBA/2) relative to the least sensitive (BALB/c) mouse strains. A strong positive relationship (r=0.91) was observed for the abilities of SCH23390 and naltrexone to inhibit intralipid intake across strains. These findings indicate that dopaminergic and opioid signaling mechanisms differentially control intralipid intake across different mouse strains, suggesting important genetic and pharmacological interactions in the short-term control of rewarding and post-ingestive consequences of fat intake.


Assuntos
Emulsões Gordurosas Intravenosas/administração & dosagem , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Antagonistas de Entorpecentes , Receptores de Dopamina D1/antagonistas & inibidores , Animais , Animais não Endogâmicos , Benzazepinas/administração & dosagem , Benzazepinas/farmacologia , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos , Naltrexona/administração & dosagem , Naltrexona/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores Opioides/metabolismo , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA