Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37512317

RESUMO

In this work, we discuss the effects of component ratios on plasma characteristics, chemistry of active species, and silicon etching kinetics in CF4 + O2, CHF3 + O2, and C4F8 + O2 gas mixtures. It was shown that the addition of O2 changes electrons- and ions-related plasma parameters rapidly suppresses densities of CFx radicals and influences F atoms kinetics through their formation rate and/or loss frequency. The dominant Si etching mechanism in all three cases is the chemical interaction with F atoms featured by the nonconstant reaction probability. The latter reflects both the remaining amount of fluorocarbon polymer and oxidation of silicon surface.

2.
Biomol Ther (Seoul) ; 23(3): 218-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25995819

RESUMO

Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor γ (PPARγ). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the CB1 receptor, TRPV1 and PPARγ. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on PPARγ transactivation. AEA can directly activate PPARγ. The effect of AEA on PPARγ in hBM-MSCs may prevail over that on the CB1 receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the PPARγ activity in the PPARγ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a CB1 antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the CB1 receptor. This result suggests that the constantly active CB1 receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective CB1 agonists that are unable to affect cellular PPARγ activity inhibit adipogenesis in hBM-MSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA