Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781722

RESUMO

The modern development of nanotechnology requires the discovery of simple approaches that ensure the controlled formation of functional nanostructures with a predetermined morphology. One of the simplest approaches is the self-assembly of nanostructures. The widespread implementation of self-assembly is limited by the complexity of controlled processes in a large volume where, due to the temperature, ion concentration, and other thermodynamics factors, local changes in diffusion-limited processes may occur, leading to unexpected nanostructure growth. The easiest ways to control the diffusion-limited processes are spatial limitation and localized growth of nanostructures in a porous matrix. In this paper, we propose to apply the method of controlled self-assembly of gold nanostructures in a limited pore volume of a silicon oxide matrix with submicron pore sizes. A detailed study of achieved gold nanostructures' morphology, microstructure, and surface composition at different formation stages is carried out to understand the peculiarities of realized nanostructures. Based on the obtained results, a mechanism for the growth of gold nanostructures in a limited volume, which can be used for the controlled formation of nanostructures with a predetermined geometry and composition, has been proposed. The results observed in the present study can be useful for the design of plasmonic-active surfaces for surface-enhanced Raman spectroscopy-based detection of ultra-low concentration of different chemical or biological analytes, where the size of the localized gold nanostructures is comparable with the spot area of the focused laser beam.

2.
Langmuir ; 35(22): 7161-7168, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31074993

RESUMO

This work presents a simple, fast (20 min treatment), inexpensive, and highly efficient method for synthesizing nitrogen-doped titanium dioxide (N-TiO2) as an enhanced visible light photocatalyst. In this study, N-TiO2 coatings were fabricated by atmospheric pressure dielectric barrier discharge (DBD) at room temperature. The composition and the chemical bonds of the TiO2 and N-TiO2 coatings were characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The results indicate that the nitrogen element has doped the TiO2 lattice, which was further confirmed by Raman spectroscopy and grazing incidence X-ray diffraction (GIXRD). The doping mechanism was investigated using OES to study the plasma properties under different conditions. It suggests that the NH radicals play a key role in doping TiO2. The concentration of nitrogen in the N-TiO2 coatings can be controlled by changing the concentration of NH3 in the plasma or the applied power to adjust the concentration of NH radicals in the plasma. The band gap of N-TiO2 was reduced after NH3/Ar plasma treatment from 3.25 to 3.18 eV. Consequently, the N-TiO2 coating showed enhanced photocatalytic activity under white-light-emitting-diode (LED) irradiation. The photocatalytic degradation rate for the N-TiO2 coating was about 1.4 times higher than that of the undoped TiO2 coating.

3.
Opt Express ; 23(20): 26639-50, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480176

RESUMO

We present a new approach to remove monolayer graphene transferred on top of a silicon-on-insulator (SOI) photonic integrated chip. Femtosecond laser ablation is used for the first time to remove graphene from SOI waveguides, whereas oxygen plasma etching through a metal mask is employed to peel off graphene from the grating couplers attached to the waveguides. We show by means of Raman spectroscopy and atomic force microscopy that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method.

4.
Adv Mater ; 36(15): e2307945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38100238

RESUMO

The emerging fields of wearables and the Internet of Things introduce the need for electronics and power sources with unconventional form factors: large area, customizable shape, and flexibility. Thermoelectric (TE) generators can power those systems by converting abundant waste heat into electricity, whereas the versatility of additive manufacturing suits heterogeneous form factors. Here, additive manufacturing of high-performing flexible TEs is proposed. Maskless and large-area patterning of Bi2Te3-based films is performed by laser powder bed fusion directly on plastic foil. Mechanical interlocking allows simultaneous patterning, sintering, and attachment of the films to the substrate without using organic binders that jeopardize the final performance. Material waste could be minimized by recycling the unexposed powder. The particular microstructure of the laser-printed material renders the-otherwise brittle-Bi2Te3 films highly flexible despite their high thickness. The films survive 500 extreme-bending cycles to a 0.76 mm radius. Power factors above 1500 µW m-1K-2 and a record-low sheet resistance for flexible TEs of 0.4 Ω sq-1 are achieved, leading to unprecedented potential for power generation. This versatile fabrication route enables innovative implementations, such as cuttable arrays adapting to specific applications in self-powered sensing, and energy harvesting from unusual scenarios like human skin and curved hot surfaces.

5.
Biomedicines ; 12(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672223

RESUMO

To date, studies assessing the safety profile of 3D printing materials for application in cardiac ablation are sparse. Our aim is to evaluate the safety and feasibility of two biocompatible 3D printing materials, investigating their potential use for intra-procedural guides to navigate surgical cardiac arrhythmia ablation. Herein, we 3D printed various prototypes in varying thicknesses (0.8 mm-3 mm) using a resin (MED625FLX) and a thermoplastic polyurethane elastomer (TPU95A). Geometrical testing was performed to assess the material properties pre- and post-sterilization. Furthermore, we investigated the thermal propagation behavior beneath the 3D printing materials during cryo-energy and radiofrequency ablation using an in vitro wet-lab setup. Moreover, electron microscopy and Raman spectroscopy were performed on biological tissue that had been exposed to the 3D printing materials to assess microparticle release. Post-sterilization assessments revealed that MED625FLX at thicknesses of 1 mm, 2.5 mm, and 3 mm, along with TPU95A at 1 mm and 2.5 mm, maintained geometrical integrity. Thermal analysis revealed that material type, energy source, and their factorial combination with distance from the energy source significantly influenced the temperatures beneath the 3D-printed material. Electron microscopy revealed traces of nitrogen and sulfur underneath the MED625FLX prints (1 mm, 2.5 mm) after cryo-ablation exposure. The other samples were uncontaminated. While Raman spectroscopy did not detect material release, further research is warranted to better understand these findings for application in clinical settings.

6.
Chempluschem ; 88(3): e202200441, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36802130

RESUMO

While synthesis-properties-performance correlations are being studied for organophosphonic acid grafted TiO2 , their stability and the impact of the exposure conditions on possible changes in the interfacial surface chemistry remain unexplored. Here, the impact of different ageing conditions on the evolution of the surface properties of propyl- and 3-aminopropylphosphonic acid grafted mesoporous TiO2 over a period of 2 years is reported, using solid-state 31 P and 13 C NMR, ToF-SIMS and EPR as main techniques. In humid conditions under ambient light exposure, PA grafted TiO2 surfaces initiate and facilitate photo-induced oxidative reactions, resulting in the formation of phosphate species and degradation of the grafted organic group with a loss of carbon content ranging from 40 to 60 wt %. By revealing its mechanism, solutions were provided to prevent degradation. This work provides valuable insights for the broad community in choosing optimal exposure/storage conditions that extend the lifetime and improve the materials' performance, positively impacting sustainability.

7.
Adv Sci (Weinh) ; 9(15): e2200237, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343108

RESUMO

In this work, immobilization of the often unwanted filaments in dielectric barrier discharges (DBD) is achieved and used for one-step deposition of patterned coatings. By texturing one of the dielectric surfaces, a discharge containing stationary plasma filaments is ignited in a mix of argon and propargyl methacrylate (PMA) in a reactor operating at atmospheric pressure. From PMA, hydrophobic and hydrophilic chemical and topographical contrasts at sub-millimeter scale are obtained on silicon and glass substrates. Chemical and physical characterizations of the samples are performed by micrometer-scale X-ray photoelectron spectroscopy and infrared imaging and by water contact angle and profilometry, respectively. From the latter and additional information from high-speed imaging of the plasma phase and electrical measurements, it is suggested that filaments, denser in energetic species, lead to higher deposition rate with higher fragmentation of the precursor, while surface discharges igniting outwards the filaments are leading to smoother and slower deposition. This work opens a new route for a one-step large-area chemical and morphological patterning of surfaces at sub-millimeter scales. Moreover, the possibility to separately deposit coatings from filaments and the surrounding plasma phase can be helpful to better understand the processes occurring during plasma polymerization in filamentary DBD.


Assuntos
Gases em Plasma , Argônio/química , Pressão Atmosférica , Interações Hidrofóbicas e Hidrofílicas , Gases em Plasma/química , Polimerização
8.
ACS Omega ; 7(49): 45409-45421, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530305

RESUMO

Amino-alkylphosphonic acid-grafted TiO2 materials are of increasing interest in a variety of applications such as metal sorption, heterogeneous catalysis, CO2 capture, and enzyme immobilization. To date, systematic insights into the synthesis-properties-performance correlation are missing for such materials, albeit giving important know-how towards their applicability and limitations. In this work, the impact of the chain length and modification conditions (concentration and temperature) of amino-alkylphosphonic acid-grafted TiO2 on the surface properties and adsorption performance of palladium is studied. Via grafting with aminomethyl-, 3-aminopropyl-, and 6-aminohexylphosphonic acid, combined with the spectroscopic techniques (DRIFT, 31P NMR, XPS) and zeta potential measurements, differences in surface properties between the C1, C3, and C6 chains are revealed. The modification degree decreases with increasing chain length under the same synthesis conditions, indicative of folded grafted groups that sterically shield an increasing area of binding sites with increasing chain length. Next, all techniques confirm the different surface interactions of a C1 chain compared to a C3 or C6 chain. This is in line with palladium adsorption experiments, where only for a C1 chain, the adsorption efficiency is affected by the precursor concentration used for modification. The absence of a straightforward correlation between the number of free NH2 groups and the adsorption capacity for the different chain lengths indicates that other chain-length-specific surface interactions are controlling the adsorption performance. The increasing pH stability in the order of C1 < C3 < C6 can possibly be associated to a higher fraction of inaccessible hydrophilic sites due to the presence of folded structures. Lastly, the comparison of adsorption performance and pH stability with 3-aminopropyl(triethoxysilane)-grafted TiO2 reveals the applicability of both grafting methods depending on the envisaged pH during sorption.

9.
RSC Adv ; 12(55): 36046-36062, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36545072

RESUMO

Modification of metal oxides with organophosphonic acids (PAs) provides the ability to control and tailor the surface properties. The metal oxide phosphonic acid bond (M-O-P) is known to be stable under harsh conditions, making PAs a promising candidate for the recovery of metals from complex acidic leachates. The thiol functional group is an excellent regenerable scavenging group for these applications. However, the research on organophosphonic acid grafting with thiol groups is very limited. In this study, four different metal sorbent materials were designed with different thiol surface coverages. An aqueous-based grafting of 3-mercaptopropylphosphonic acid (3MPPA) on mesoporous TiO2 was employed. Surface grafted thiol groups could be obtained in the range from 0.9 to 1.9 groups per nm2. The different obtained surface properties were studied and correlated to the Pd adsorption performance. High Pd/S adsorption efficiencies were achieved, indicating the presence of readily available sorption sites. A large difference in their selectivity towards Pd removal from a spend automotive catalyst leachate was observed due to the co-adsorption of Fe on the titania support. The highest surface coverage showed the highest selectivity (K d: 530 mL g-1) and adsorption capacity (Q max: 0.32 mmol g-1) towards Pd, while strongly reducing the co-adsorption of Fe on remaining TiO2 sites.

10.
ACS Nano ; 15(9): 14858-14872, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34428372

RESUMO

Colloidal Cu-Ag nanocrystals measuring less than 10 nm across are promising candidates for integration in hybrid CO2 reduction reaction (CO2RR) interfaces, especially in the context of tandem catalysis and selective multicarbon (C2-C3) product formation. In this work, we vary the synthetic-ligand/copper molar ratio from 0.1 to 1.0 and the silver/copper atomic ratio from 0 to 0.7 and study the variations in the nanocrystals' size distribution, morphology and reactivity at rates of ≥100 mA cm-2 in a gas-fed recycle electrolyzer operating under neutral to mildly basic conditions (0.1-1.0 M KHCO3). High-resolution electron microscopy and spectroscopy are used in order to characterize the morphology of sub-10 nm Cu-Ag nanodimers and core-shells and to elucidate trends in Ag coverage and surface composition. It is shown that Cu-Ag nanocrystals can be densely dispersed onto a carbon black support without the need for immediate ligand removal or binder addition, which considerably facilitates their application. Although CO2RR product distribution remains an intricate function of time, (kinetic) overpotential and processing conditions, we nevertheless conclude that the ratio of oxygenates to hydrocarbons (which depends primarily on the initial dispersion of the nanocrystals and their composition) rises 3-fold at moderate Ag atom % relative to Cu NCs-based electrodes. Finally, the merits of this particular Cu-Ag/C system and the recycling reactor employed are utilized to obtain maximum C2-C3 partial current densities of 92-140 mA cm-2 at -1.15 VRHE and liquid product concentrations in excess of 0.05 wt % in 1 M KHCO3 after short electrolysis periods.

11.
Langmuir ; 22(26): 11360-8, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154626

RESUMO

Detection of the interactions between low molecular weight organic compounds and metals in the form of sols on a nanoscale is analytically challenging. This study aims to provide experimental evidence using a combination of UV-Vis absorption spectrometry, surface-enhanced Raman spectrometry (SERS), and static secondary ion mass spectrometry (S-SIMS). The field of application is thermography where silver images are formed via heat-catalyzed reactions. Several organic compounds called tone modifiers and stabilizers are used in thermographic materials for the optimization of the image quality. With exploitation of the strengths of each of the above-mentioned methods, an affinity ranking of several tone modifiers and a stabilizer was established on the basis of competitive adsorption experiments using different model systems. Specifically, silver sols, SERS probes, and sputter-coated silver substrates were exposed to systems with one or two additives. The UV-Vis results provided insight on the aggregation of silver nanoparticles in a hydrosol, which was necessary for the interpretation of the SERS data. Both SERS and S-SIMS measurements led to a similar ranking of the relative affinity of the additives in two components, which was largely consistent with empirical knowledge derived from macroscopic behavior.


Assuntos
Compostos Heterocíclicos com 2 Anéis/química , Nanopartículas Metálicas/química , Prata/química , Espectrometria de Massa de Íon Secundário/métodos , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA