Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 26(5): 2164-74, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22319010

RESUMO

The small G protein Ras regulates many cell processes, such as gene expression, proliferation, apoptosis, and cell differentiation. Its mutations are associated with one-third of all cancers. Ras functions are mediated, at least in part, by Ral proteins and their downstream effector the Ral-binding protein 1 (RalBP1). RalBP1 is involved in endocytosis and in regulating the dynamics of the actin cytoskeleton. It also regulates early development since it is required for the completion of gastrulation in Xenopus laevis. RalBP1 has also been reported to be the main transporter of glutathione electrophiles, and it is involved in multidrug resistance. Such a variety of functions could be explained by a differential regulation of RalBP1 localization. In this study, we have detected endogenous RalBP1 in the nucleus of interphasic cells. This nuclear targeting is mediated by nuclear localization sequences that map to the N-terminal third of the protein. Moreover, in X. laevis embryos, a C-terminal coiled-coil sequence mediates RalBP1 retention in the nucleus. We have also observed RalBP1 at the level of the actin cytoskeleton, a localization that depends on interaction of the protein with active Ral. During mitosis RalBP1 also associates with the mitotic spindle and the centrosome, a localization that could be negatively regulated by active Ral. Finally, we demonstrate the presence of post-transcriptional and post-translational isoforms of RalBP1 lacking the Ral-binding domain, which opens new possibilities for the existence of Ral-independent functions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Frações Subcelulares/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Processamento de Proteína Pós-Traducional , Processamento Pós-Transcricional do RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Xenopus laevis
2.
Clin Cancer Res ; 20(16): 4314-25, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24947930

RESUMO

PURPOSE: Patients with luminal breast cancer (LBC) often become endocrine resistant over time. We investigated the molecular changes associated with acquired hormonoresistances in patient-derived xenografts of LBC. EXPERIMENTAL DESIGN: Two LBC xenografts (HBCx22 and HBCx34) were treated with different endocrine treatments (ET) to obtain xenografts with acquired resistances to tamoxifen (TamR) and ovariectomy (OvaR). PI3K pathway activation was analyzed by Western blot analysis and IHC and responses to ET combined to everolimus were investigated in vivo. Gene expression analyses were performed by RT-PCR and Affymetrix arrays. RESULTS: HBCx22 TamR xenograft was cross-resistant to several hormonotherapies, whereas HBCx22 OvaR and HBCx34 TamR exhibited a treatment-specific resistance profile. PI3K pathway was similarly activated in parental and resistant xenografts but the addition of everolimus did not restore the response to tamoxifen in TamR xenografts. In contrast, the combination of fulvestrant and everolimus induced tumor regression in vivo in HBCx34 TamR, where we found a cross-talk between the estrogen receptor (ER) and PI3K pathways. Expression of several ER-controlled genes and ER coregulators was significantly changed in both TamR and OvaR tumors, indicating impaired ER transcriptional activity. Expression changes associated with hormonoresistance were both tumor and treatment specific and were enriched for genes involved in cell growth, cell death, and cell survival. CONCLUSIONS: PDX models of LBC with acquired resistance to endocrine therapies show a great diversity of resistance phenotype, associated with specific deregulations of ER-mediated gene transcription. These models offer a tool for developing anticancer therapies and to investigate the dynamics of resistance emerging during pharmacologic interventions. Clin Cancer Res; 20(16); 4314-25. ©2014 AACR.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Tamoxifeno/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA