RESUMO
Destabilization of a ligand-stabilized semiconductor nanocrystal solution with an oxidizing agent can lead to a macroscopic highly porous self-supporting nanocrystal network entitled hydrogel, with good accessibility to the surface. The previously reported charge carrier delocalization beyond a single nanocrystal building block in such gels can extend the charge carrier mobility and make a photocatalytic reaction more probable. The synthesis of ligand-stabilized nanocrystals with specific physicochemical properties is possible, thanks to the advances in colloid chemistry made in the last decades. Combining the properties of these nanocrystals with the advantages of nanocrystal-based hydrogels will lead to novel materials with optimized photocatalytic properties. This work demonstrates that CdSe quantum dots, CdS nanorods, and CdSe/CdS dot-in-rod-shaped nanorods as nanocrystal-based hydrogels can exhibit a much higher hydrogen production rate compared to their ligand-stabilized nanocrystal solutions. The gel synthesis through controlled destabilization by ligand oxidation preserves the high surface-to-volume ratio, ensures the accessible surface area even in hole-trapping solutions and facilitates photocatalytic hydrogen production without a co-catalyst. Especially with such self-supporting networks of nanocrystals, the problem of colloidal (in)stability in photocatalysis is circumvented. X-ray photoelectron spectroscopy and photoelectrochemical measurements reveal the advantageous properties of the 3D networks for application in photocatalytic hydrogen production.
RESUMO
Successful construction of heterojunction can improve the utilization efficiency of solar light by broadening the absorption range, facilitating charge-carrier separation, promoting carrier transportation and influencing surface-interface reaction. Herein, visible-light-driven AgBr was deposited on the surface of lamellar BiVO4which was prepared by a facile hydrothermal process to improve charge carrier separation, and subsequent photocatalytic effectiveness. The catalyst with an optimal AgBr/BiVO4ratio exhibited a superbly enhanced photocatalytic decolorization ability (about 6.85 times higher than that of pure BiVO4) and high stability after four cycles. The unique photocatalytic mechanism of S-scheme carrier migration was investigated on the bases of radical trapping tests and photo/electrochemical characterizations. Results showed that the enhanced migration strategy and intimately interfacial collaboration guaranteed the effective charge carriers separation/transfer, leading to magnificent photocatalytic performance as well as excellent stability.
RESUMO
Energy and environmental challenges are global concerns that scientists are interested in alleviating. It is on this premise that we prepared boron/nitrogen graphene-coated Cu0/TiO2 (B/N-graphene-coated Cu/TiO2) photocatalyst of varying B:N ratios with dual functionality of H2 production and 2-Chlorophenol (2-CP) degradation. In-situ coating of Cu0 with B/N-graphene is achieved via solvothermal synthesis and calcination under an inert atmosphere. All B/N-graphene-coated Cu/TiO2 exhibit higher photonic efficiencies (5.68%-7.06% at 300 < λ < 400 nm) towards H2 production than bare TiO2 (0.25% at 300 < λ < 400 nm). Varying the B:N ratio in graphene influences the efficiency of H2 generation. A B:N ratio of 0.08 yields the most active composite exhibiting a photonic efficiency of 7.06% towards H2 evolution and a degradation rate of 4.07 × 10-2 min-1 towards 2-chlorophenol (2-CP). Density functional theory (DFT) investigations determine that B-doping (p-type) enhances graphene stability on Cu0 while N-doping (n-type) increases the reduction potential of Cu0 relative to H+ reduction potential. X-ray photoelectron spectroscopy reveals that increasing the B:N ratio increases p-type BC2O while decreasing n-type pyridinic-N in graphene thus altering the interlayer electron density. Isotopic labelling experiments determine water reduction as the main mechanism by which H2 is produced over B/N-graphene-coated Cu/TiO2. The reactive species involved in the degradation of 2-CP are holes (h+), hydroxyl radical (OHâ¢), and O2â¢-, of which superoxide (O2â¢-) plays the major role. This work displays B/N -graphene-coated Cu/TiO2 as a potential photocatalyst for large-scale H2 production and 2-CP degradation.
RESUMO
Pharmaceuticals, especially antibiotics, constitute an important group of aquatic contaminants given their environmental impact. Specifically, tetracycline antibiotics (TCs) are produced in great amounts for the treatment of bacterial infections in both human and veterinary medicine. Several studies have shown that, among all antibiotics, oxytetracycline hydrochloride (OTC HCl) is one of the most frequently detected TCs in soil and surface water. The results of the photocatalytic degradation of OTC HCL in aqueous suspensions (30 mg·L-1) of 0.5 wt.% cobalt-doped TiO2 catalysts are reported in this study. The heterogeneous Co-TiO2 photocatalysts were synthesized by two different solvothermal methods. Evonik Degussa Aevoxide P25 and self-prepared TiO2 modified by the same methods were used for comparison. The synthesized photocatalysts were characterized by X-ray powder diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), UV/vis diffuse reflectance spectroscopy (DRS), and N2 adsorption (BET) for specific surface area determination. The XRD and Raman results suggest that Ti4+ was substituted by Co2+ in the TiO2 crystal structure. Uv/visible spectroscopy of Co-TiO2-R showed a substantial redshift in comparison with bare TiO2-R. The photocatalytic performance of the prepared photocatalysts in OTC HCL degradation was investigated employing Uv/vis spectroscopy and high-performance liquid chromatography (HPLC). The observed initial reaction rate over Co-TiO2-R was higher compared with that of Co-TiO2-HT, self-prepared TiO2, and the commercial P25. The enhanced photocatalytic activity was attributed to the high surface area (153 m2·g-1) along with the impurity levels within the band gap (2.93 eV), promoting the charge separation and improving the charge transfer ability. From these experimental results, it can be concluded that Co-doping under reflux demonstrates better photocatalytic performances than with the hydrothermal treatment.
Assuntos
Antibacterianos/química , Cobalto/química , Nanopartículas/química , Oxitetraciclina/química , Titânio/química , Poluentes Químicos da Água/química , Catálise , Luz , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Oxirredução , Análise Espectral Raman , Raios Ultravioleta , Purificação da Água/instrumentação , Purificação da Água/métodos , Difração de Raios XRESUMO
TiO2/WO3 heterojunctions are one of the most investigated systems for photocatalytic applications. However, distinct behavior can be found in the literature depending on the pollutant to be degraded and the photocatalyst preparation conditions. Some authors reported improved photocatalytic activities in relation to TiO2, while others a deleterious effect. Different factors have been identified to influence the activity of such systems. In this work, a systematic investigation of TiO2/WO3 samples with different W/Ti ratios (0-100%) was carried out using different pollutants as targets (gaseous NO, acetaldehyde and aqueous methylene blue solutions). A detailed structural investigation along with transient absorption studies and photoelectrochemical measurements allowed the rationalization of some of the previously reported factors that control the TiO2/WO3 photoactivity, i.e. the inability to reduce molecular oxygen, the stabilization of the anatase phase and the adsorption surface properties. The investigations also identified a factor not previously reported: in TiO2/WO3 systems, a fraction of long-lived holes do not take part in the interfacial charge transfer to efficient hole quenchers, such as methanol. This behavior seems to be related to the doping of the TiO2 matrix with W(vi) and plays a key role in the photocatalytic activity.
RESUMO
Two-dimensional (2D) photocatalysts are highly attractive for their great potential in environmental remediation and energy conversion. Herein, we report a novel layered zinc silicate (LZS) photocatalyst synthesized by a liquid-phase epitaxial growth route using silica derived from vermiculite, a layered silicate clay mineral, as both the lattice-matched substrate and Si source. The epitaxial growth of LZS is limited in the 2D directions, thus generating the vermiculite-type crystal structure and ultrathin nanosheet morphology with thicknesses of 8-15â nm and a lateral size of about 200â nm. Experimental observations and DFT calculations indicated that LZS has a superior band alignment for the degradation of organic pollutants and reduction of CO2 to CO. The material exhibited efficient photocatalytic performance for 4-chlorophenol (4-CP) degradation and CO2 conversion into CO and is the first example of a claylike 2D photocatalyst with strong photooxidation and photoreduction capabilities.
RESUMO
The effects of the particle size distribution on the charge carrier dynamics and the photocatalytic activity of mixed titanium dioxide (TiO2) powder samples were investigated in this work. Instead of the synthesis of the small semiconductor particles, the binary particle size distributions of the powders were obtained by mixing commercially available TiO2 powders with different particle sizes. The pure anatase samples (average diameters: 7, 20, and 125 nm, respectively) were created via ultrasound treatment and discreet drying. The photocatalytic activity of the powder samples was assessed by the degradation of nitric oxide (NO) and acetaldehyde in the gas phase. Furthermore, the charge carrier kinetics was determined using transient absorption spectroscopy following pulsed laser excitation. Importantly, a recently published model based on fractal dimensions was used to fit the transient signals of the photo generated charge carriers in the TiO2 powder samples. The effects of the particle size on the acetaldehyde degradation could be explained by the formation of agglomerates, which reduce the available surface area of smaller particles. The fast oxidation of acetaldehyde on the surface of TiO2 by direct hole transfer was further independent of the observed charge carrier lifetimes on the microsecond time scale. The photocatalytic NO degradation, on the other hand, increased for samples containing larger amounts of small particles. The corresponding photonic efficiencies correlated well with the charge carrier lifetimes determined by the time-resolved studies. Hence, it was concluded that a long charge carrier lifetime generally leads to higher fractional conversions of NO. The employed fractal fit function was proved to be beneficial for the kinetic analysis of charge carrier recombination in TiO2, in direct comparison with a second order fit function.
RESUMO
Spinel ferrites (T[M1-xFex]O[MxFe2-x]O4 with 0 ≤ x ≤ 1, where M is a bivalent metal ion and the superscripts denote tetrahedral and octahedral sites) are materials commonly used in electronics due to their outstanding magnetic properties. Thus, the effect of the degree of inversion, x, on these properties is well known. However, its effect on other properties of these materials has rarely been investigated in detail. Since ferrites gained much attention during the last decade as visible light active photocatalysts and photoelectrocatalysts, understanding the effect of the degree of inversion on the optical properties became necessary. Among photocatalytically and photoelectrocatalytically active spinel ferrites, zinc ferrite (ZnFe2O4, ZFO) is one of the most widely studied materials. In this work, five ZFO samples with degrees of inversion varying from 0.07 to 0.20 were prepared by a solid-state reaction employing different annealing temperatures and subsequent quenching. Raman and UV-Vis-NIR spectra were measured and analyzed together with theoretical results obtained from ab initio calculations. Changes in the UV-Vis-NIR spectra associated with electronic transitions of tetrahedrally and octahedrally coordinated Fe3+ ions are distinguished. However, the optical band gap of the material remains unchanged as the degree of inversion varies. Based on the experimental and theoretical results, a new assignment for the Raman active internal modes and the electronic transitions of ZFO is proposed.
RESUMO
The photophysical behavior and reactive oxygen species (ROS) generation by chloroaluminum phthalocyanine (AlClPc) are evaluated by steady state absorption/emission, transient emission, and electron paramagnetic resonance spectroscopies in the presence of graphene oxide (GO), reduced graphene oxide (RGO), and carboxylated nanographene oxide (NGO). AlClPc and graphene oxides form a supramolecular structure stabilized by π-π interactions, which quantitatively quenches fluorescence emission and suppresses ROS generation. These effects occur even when graphenes are previously functionalized with Pluronic F-127. A small part of quenching is due to an inner filter effect, in which graphene oxides compete with AlClPc for light absorption. Nonetheless, most of the (static) quenching arises on the formation of a nonemissive ground state complex between AlClPc and graphene oxides. The efficiency of graphene oxides on the fluorescence quenching and ROS generation suppression follows the order: GO < NGO < RGO.
RESUMO
Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via ⢠OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.
Assuntos
Gadolínio/química , Luminescência , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Espécies Reativas de Oxigênio/metabolismo , Marcadores de Spin , Titânio/química , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Teoria da Densidade Funcional , Humanos , Radical Hidroxila/química , Imageamento por Ressonância Magnética , Nanopartículas/ultraestrutura , Imagem Óptica , Porosidade , Temperatura , Raios Ultravioleta , Difração de Raios XRESUMO
Herein, we report the effect of the laser illumination during the diffuse-reflectance laser-flash-photolysis measurements on the morphological and optical properties of TiO2 powders. A grey-blue coloration of the TiO2 nanoparticles has been observed after intense laser illumination. This is explained by the formation of nonreactive trapped electrons accompanied by the release of oxygen atoms from the TiO2 matrix as detected by means of UV-vis and EPR spectroscopy. Moreover, in the case of the pure anatase sample a phase transition of some TiO2 nanoparticles located in the inner region from anatase to rutile occurred. It is suggested that these structural changes in TiO2 are caused by an energy and charge transfer to the TiO2 lattice.
RESUMO
We investigated a sequential photocatalysis-dark reaction, wherein organic pollutants were degraded on Ag/TiO2 under UV irradiation and the dark reduction of hexavalent chromium (Cr(VI)) was subsequently followed. The photocatalytic oxidation of 4-chlorophenol (4-CP), a test organic substrate, induced the generation of degradation intermediates and the storage of electrons in Ag/TiO2 which were then utilized for reducing Cr(VI) in the postirradiation period. The dark reduction efficiency of Cr(VI) was much higher with Ag/TiO2 (87%), compared with bare TiO2 (27%) and Pt/TiO2 (22%). The Cr(VI) removal by Ag/TiO2 (87%) was contributed by adsorption (31%), chemical reduction by intermediates of 4-CP degradation (26%), and reduction by electrons stored in Ag (30%). When formic acid, humic acid or ethanol was used as an alternative organic substrate, the electron storage effect was also observed. The postirradiation removal of Cr(VI) on Ag/TiO2 continued for hours, which is consistent with the observation that a residual potential persisted on the Ag/TiO2 electrode in the dark whereas little residual potential was observed on bare TiO2 and Pt/TiO2 electrodes. The stored electrons in Ag/TiO2 and their transfer to Cr(VI) were also indicated by the UV-visible absorption spectral change. Moreover, the electrons stored in the preirradiated Ag/TiO2 reacted with O2 with showing a sign of low-level OH radical generation in the dark period.
Assuntos
Poluentes Ambientais , Adsorção , Catálise , Cromo , Poluentes Ambientais/química , Poluentes Ambientais/efeitos da radiação , Substâncias Húmicas , Oxirredução , Titânio , Raios UltravioletaRESUMO
Novel bioactive complexes of Co(II), Cu(II), Ni(II) and Zn(II) metal ions with Schiff base ligand derived from histidine and 1,3-indandione were synthesized and thoroughly characterized by various analytical and spectral techniques. The biological investigations were carried out to examine the efficiency of the binding interaction of all the complexes with calf thymus DNA (CT-DNA). The binding properties were studied and evaluated quantitatively by Kb and Ksq values using UV-visible, fluorescence spectroscopy and voltammetric techniques. The experimental results revealed that the mode of binding of all the complexes with CT-DNA is via intercalation. It is further verified by viscosity measurements and thermal denaturation experiments. From the results of the cleavage study with pUC19 DNA it is inferred that all the complexes possess excellent cleaving ability. The present investigation proved that the binding interaction of all the complexes are significantly strong and the order of binding strength of the complexes is [Ni(L)2] (Kb = 3.11 × 106 M-1) > [Co(L)2] (Kb = 2.89 × 106 M-1) > [Cu(L)2] (Kb = 2.64 × 106 M-1) > [Zn(L)2] (Kb = 2.41 × 105 M-1). The complexes were also screened for antibacterial and anticandidal activity. The in vitro cytotoxicity of the ligand and complexes on the NIH/3 T3 mouse fibroblast cell lines were examined using CellTiter-Blue® (CTB) Cell viability assay, which unveiled that all the complexes exhibit more potent activities against NIH/3 T3 cells. Among all the complexes [Zn(L)2] complex showed the maximum efficiency.
Assuntos
Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Histidina/química , Indanos/química , Metais/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Cobalto/química , Cobre/química , Clivagem do DNA/efeitos dos fármacos , Ligantes , Camundongos , Células NIH 3T3 , Níquel/química , Bases de Schiff/química , Zinco/químicaRESUMO
The dynamics of the transfer of electrons stored in TiO2 nanoparticles to As(III) , As(V) , and uranyl nitrate in water was investigated by using the stopped-flow technique. Suspensions of TiO2 nanoparticles with stored trapped electrons (etrap (-) ) were mixed with solutions of acceptor species to evaluate the reactivity by following the temporal evolution of etrap (-) by the decrease in the absorbance at λ=600â nm. The results indicate that As(V) and As(III) cannot be reduced by etrap (-) under the reaction conditions. In addition, it was observed that the presence of As(V) and As(III) strongly modified the reaction rate between O2 and etrap (-) : an increase in the rate was observed if As(V) was present and a decrease in the rate was observed in the presence of As(III) . In contrast with the As system, U(VI) was observed to react easily with etrap (-) and U(IV) formation was observed spectroscopically at λ=650â nm. The possible competence of U(VI) and NO3 (-) for their reduction by etrap (-) was analyzed. The inhibition of the U(VI) photocatalytic reduction by O2 could be attributed to the fast oxidation of U(V) and/or U(IV) .
RESUMO
Modified Pt-TiO2 NPs/decorated carbon nanotubes were synthesized utilizing sonochemical/hydration-dehydration techniques. Pt was loaded on TiO2 by a photodeposition method keeping in mind the end goal to achieve electron-hole pair separation and promote the surface reaction. The morphological and basic properties of Pt-TiO2/fCNTs were investigated by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and Raman spectroscopy. The selected area electron diffraction (SAED) patterns of Pt-TiO2/fCNTs were obtained utilizing TEM-based energy dispersive X-ray spectroscopy (EDXS) analysis. It was found that the TiO2 nanoparticles were uniformly distributed on the fCNTs, and the Pt particles were decorated on the surface of TiO2/fCNTs. The photocatalytic hydrogen production activity of the Pt(0.5%)-TiO2/fCNTs(0.5%) nanoparticle composites was investigated using a sacrificial agent methanol solution. Pt-loaded TiO2 demonstrated a hydrogen evolution rate around 20 times that of TiO2/fCNTs(0.5%) (fSWCNTs, fMWCNTs). When compared with platinized TiO2 in methanol, which was utilized as a control material, Pt-TiO2/fCNTs demonstrated an almost 2-fold increment in hydrogen generation.
RESUMO
Charge carrier dynamics in phase pure Ba5Ta4O15 and in a Ba5Ta4O15-Ba3Ta5O15 composite have been studied by means of diffuse reflectance laser flash photolysis spectroscopy in the presence and absence of an electron donor, in order to reveal the reason for the improved photocatalytic performance of the latter. For the first time the transient absorption of trapped electrons with a maximum at around 650 nm and of trapped holes with a transient absorption maximum at around 310 nm is reported for tantalates. The decay kinetics of the photogenerated charge carriers could be fitted by second order reaction kinetics, and the direct recombination of the trapped electrons with the trapped holes was proven. In the absence of an electron donor, no difference in the decay behavior between the phase pure material and the composite material is found. In the presence of methanol, for the pure phase Ba5Ta4O15 the recombination of the charge carriers could not be prevented and the trapped electrons also recombine with the ËCH2OH radical formed via the methanol oxidation by the trapped holes. However, in the composite, the electron can be stored in the system, the ËCH2OH radical injects an electron into the conduction band of the second component of the composite, i.e., Ba3Ta5O15. Thus, the electrons are available for an extended period to induce reduction reactions.
RESUMO
A versatile method to fabricate self-supported aerogels of nanoparticle (NP) building blocks is presented. This approach is based on freezing colloidal NPs and subsequent freeze drying. This means that the colloidal NPs are directly transferred into dry aerogel-like monolithic superstructures without previous lyogelation as would be the case for conventional aerogel and cryogel fabrication methods. The assembly process, based on a physical concept, is highly versatile: cryogelation is applicable for noble metal, metal oxide, and semiconductor NPs, and no impact of the surface chemistry or NP shape on the resulting morphology is observed. Under optimized conditions the shape and volume of the liquid equal those of the resulting aerogels. Also, we show that thin and homogeneous films of the material can be obtained. Furthermore, the physical properties of the aerogels are discussed.
RESUMO
The photocatalytic properties of titanium dioxide (TiO2 ) layers on different metal plates are investigated. The metal-semiconductor interface can be described as a Schottky contact, and is part of a depletion layer for the majority carriers in the semiconductor. Many researchers have demonstrated an increase in the photocatalytic activity, due to the formation of a metal-semiconductor contact that are obtained by deposition of small metal islands on the semiconductor. Nevertheless, the influence of a Schottky contact remains uncertain, sparking much interest in this field. The immobilization of nanoparticulate TiO2 layers by dip-coating on different metal substrates results in the formation of a Schottky contact. The recombination rate of photoinduced electron-hole pairs decreases at this interface provided that the thickness of the thin TiO2 layer has a similar magnitude to the depletion layer. The degradation of dichloroacetic acid in aqueous solution and of acetaldehyde in a gas mixture is investigated to obtain information concerning the influence of the metal work function of the back contact on the efficiency of the photocatalytic process.
RESUMO
The dynamics of the transfer of electrons stored in TiO2 nanoparticles to Cr(VI) in aqueous solution have been investigated using the stopped flow technique. TiO2 nanoparticles were previously irradiated under UV light in the presence of formic acid, and trapped electrons (e(trap)(-)) were made to react with Cr(VI) as acceptor species; other common acceptor species such as O2 and H2O2 were also tested. The temporal evolution of the number of trapped electrons was followed by the decrease in the absorbance at 600 nm, and the kinetics of the electron-transfer reaction was modeled. Additionally, the rate of formation of the surface complex between Cr(VI) and TiO2 was determined with the stopped flow technique by following the evolution of the absorbance at 400 nm of suspensions of nonirradiated TiO2 nanoparticles and Cr(VI) at different concentrations. An approximately quadratic relationship was observed between the maximum absorbance of the surface complex and the concentration of Cr(VI), suggesting that Cr(VI) adsorbs onto the TiO2 surface as dichromate. The kinetic analyses indicate that the electron transfer from TiO2 to Cr(VI) does not require the previous formation of the Cr(VI)-TiO2 surface complex, at least the complex detected here through the stopped flow experiments. When previously irradiated TiO2 was used to follow the evolution of the Cr(VI)-TiO2 complex, an inhibition of the formation of the complex was observed, which can be related to the TiO2 deactivation caused by Cr(III) deposition.
RESUMO
The adsorption of water and deuterium oxide on TiO2 surfaces was investigated in the dark as well as under UV(A) irradiation using in situ ATR-FTIR spectroscopy under oxygen and oxygen free conditions. Adsorption of H2O-D2O mixtures revealed an isotopic exchange reaction occurring onto the surface of TiO2 in the dark. Under UV(A) irradiation, the amount of both OH and OD groups was found to be increased by the presence of molecular oxygen. Furthermore, the photocatalytic formation of hydroperoxide under oxygenated condition has been recorded utilizing Attenuated Total Reflection Fourier Transformed Infrared (ATR-FTIR) spectroscopy which appeared as new band at 3483 cm(-1). Different possible mechanisms are discussed in terms of the source of hydroxyl groups formed and/or hydration water on the TiO2 surface for the photocatalytic reaction and photoinduced hydrophilicity.