Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35181608

RESUMO

Dynamic biomaterials excel at recapitulating the reversible interlocking and remoldable structure of the extracellular matrix (ECM), particularly in manipulating cell behaviors and adapting to tissue morphogenesis. While strategies based on dynamic chemistries have been extensively studied for ECM-mimicking dynamic biomaterials, biocompatible molecular means with biogenicity are still rare. Here, we report a nature-derived strategy for fabrication of dynamic biointerface as well as a three-dimensional (3D) hydrogel structure based on reversible receptor-ligand interaction between the glycopeptide antibiotic vancomycin and dipeptide d-Ala-d-Ala. We demonstrate the reversible regulation of multiple cell types with the dynamic biointerface and successfully implement the dynamic hydrogel as a functional antibacterial 3D scaffold to treat tissue repair. In view of the biogenicity and high applicability, this nature-derived reversible molecular strategy will bring opportunities for malleable biomaterial design with great potential in biomedicine.


Assuntos
Matriz Extracelular/química , Matriz Extracelular/fisiologia , Engenharia de Proteínas/métodos , Alanina/química , Alanina/metabolismo , Materiais Biocompatíveis/química , Biomimética/métodos , Dipeptídeos/metabolismo , Humanos , Hidrogéis/química , Ligantes , Vancomicina/química , Vancomicina/metabolismo
2.
J Nanobiotechnology ; 20(1): 241, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606794

RESUMO

Periprosthetic osteolysis (PPO) triggered by wear particles is the most severe complication of total joint replacement (TJR) surgeries, representing the major cause of implant failure, which is public health concern worldwide. Previous studies have confirmed the specialized role of osteoclast-induced progressive bone destruction in the progression of PPO. Additionally, the reactive oxygen species (ROS) induced by wear particles can promote excessive osteoclastogenesis and bone resorption. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), a cellular enzyme, is considered to be responsible for the production of ROS and the formation of mature osteoclasts. However, NOX4 involvement in PPO has not yet been elucidated. Therefore, we investigated the mechanism by which NOX4 regulates osteoclast differentiation and the therapeutic effects on titanium nanoparticle-induced bone destruction. We found that NOX4 blockade suppressed osteoclastogenesis and enhanced the scavenging of intracellular ROS. Our rescue experiment revealed that nuclear factor-erythroid 2-related factor 2 (Nrf2) silencing reversed the effects of NOX4 blockade on ROS production and osteoclast differentiation. In addition, we found increased expression levels of NOX4 in PPO tissues, while NOX4 inhibition in vivo exerted protective effects on titanium nanoparticle-induced osteolysis through antiosteoclastic and antioxidant effects. Collectively, these findings suggested that NOX4 blockade suppresses titanium nanoparticle-induced bone destruction via activation of the Nrf2 signaling pathway and that NOX4 blockade may be an attractive therapeutic approach for preventing PPO.


Assuntos
Nanopartículas , Osteólise , Animais , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Osteogênese , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , Osteólise/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais , Titânio/farmacologia
3.
Pharmacol Res ; 174: 105967, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34740817

RESUMO

Osteoporosis (OP) is characterized by decreased trabecular bone volume and microarchitectural deterioration in the medullary cavity. Urolithin A (UA) is a biologically active metabolite generated by the gut microbiota. UA is the measurable product considered the most relevant urolithin as the final metabolic product of polyphenolic compounds. Considering that catabolic effects mediated by the intestinal microbiota are highly involved in pathological bone disorders, exploring the biological influence and molecular mechanisms by which UA alleviates OP is crucial. Our study aimed to investigate the effect of UA administration on OP progression in the context of estrogen deficiency-induced bone loss. The in vivo results indicated that UA effectively reduced ovariectomy-induced systemic bone loss. In vitro, UA suppressed Receptor Activator for Nuclear Factor-κB Ligand (RANKL)-triggered osteoclastogenesis in a concentration-dependent manner. Signal transduction studies and sequencing analysis showed that UA significantly decreased the expression of inflammatory cytokines (e.g., IL-6 and TNF-α) in osteoclasts. Additionally, attenuation of inflammatory signaling cascades inhibited the NF-κB-activated NOD-like receptor signaling pathway, which eventually led to decreased cytoplasmic secretion of IL-1ß and IL-18 and reduced expression of pyroptosis markers (NLRP3, GSDMD, and caspase-1). Consistent with this finding, an NLRP3 inflammasome inhibitor (MCC950) was employed to treat OP, and modulation of pyroptosis was found to ameliorate osteoclastogenesis and bone loss in ovariectomized (OVX) mice, suggesting that UA suppressed osteoclast formation by regulating the inflammatory signal-dependent pyroptosis pathway. Conceivably, UA administration may be a safe and promising therapeutic strategy for osteoclast-related bone diseases such as OP.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cumarínicos/uso terapêutico , Osteoporose Pós-Menopausa/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Catepsina K/genética , Catepsina K/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Piroptose/efeitos dos fármacos , Ligante RANK/genética , Ligante RANK/farmacologia , Células RAW 264.7 , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Cell Biol Toxicol ; 37(1): 85-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33099657

RESUMO

Synovial mesenchymal stem cells (SMSCs) have the potential to attenuate osteoarthritis (OA)-induced injury. The role and mechanism of SMSC-derived exosomes (SMSC-Exos), pivotal paracrine factors of stem cells, in OA-associated injury remain unclear. We aimed to confirm the effect of SMSC-Exos with specific modifications on OA-induced damage and to investigate the potential molecular mechanisms. Exosomes derived from miR-155-5p-overexpressing SMSCs (SMSC-155-5p-Exos) and SMSCs (SMSC-Exos) were isolated and characterized. CCK-8, Transwell, and Western blot analyses were used to detect proliferation, migration, extracellular matrix (ECM) secretion, and apoptosis of osteoarthritic chondrocytes. The therapeutic effect of exosomes in a mouse model of OA was examined using immunohistochemical staining and OARSI scores. SPSS 17.0 and GraphPad software were used for all statistical analyses in this study. The SMSC-Exos enhanced the proliferation and migration and inhibited the apoptosis of osteoarthritic chondrocytes but had no effect on ECM secretion. The miR-155-5p-overexpressing exosomes showed common characteristics of exosomes in vitro and further promoted ECM secretion by targeting Runx2. Thus, the SMSC-155-5p-Exos promoted proliferation and migration, suppressed apoptosis and enhanced ECM secretion of osteoarthritic chondrocytes, and effectively prevented OA in a mouse model. In addition, overexpression of Runx2 partially reversed the effect of the SMSC-155-5p-Exos on osteoarthritic chondrocytes. Given the insufficient effect of the SMSC-Exos on the ECM secretion of osteoarthritic chondrocytes, we modified the SMSM-Exos and demonstrated that the SMSC-155-5p-Exos could prevent OA. Exosomes derived from modified SMSCs may be a new treatment strategy to prevent OA. Graphical abstract.


Assuntos
Apoptose , Condrócitos/patologia , Exossomos/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteoartrite/prevenção & controle , Membrana Sinovial/patologia , Animais , Sequência de Bases , Movimento Celular , Proliferação de Células , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Exossomos/ultraestrutura , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Osteoartrite/patologia
5.
Bioorg Chem ; 113: 104978, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052737

RESUMO

Osteoarthritis (OA) is a chronic disease featured by joint hyperplasia, deterioration of articular cartilage, and progressive degeneration. Abnormal expression of microRNAs (miRNAs) has been found to be implicated in the pathological process of OA. In this study, the role of miR-361-5p transferred by exosomes derived from human bone mesenchymal stem cells (hBMSCs) in OA was investigated. The expression of Asp-Glu-Ala-Asp-box polypeptide 20 (DDX20) and miR-361-5p in interleukin-1ß (IL-1ß)-treated chondrocytes was determined by reverse transcription quantitative polymerase chain reaction. DDX20 was knocked down by transfection of short hairpin RNA targeting DDX20, and the effects of DDX20 downregulation on IL-1ß-induced damage of chondrocytes were detected. The interaction between DDX20 and miR-361-5p was tested by luciferase report assay. hBMSCs-derived exosomes loaded with miR-361-5p were co-incubated with chondrocytes followed by detection of cell viability, proliferation and inflammatory response. An OA rat model was established to further explore the role of miR-361-5p in vivo. Western blot, luciferase reporter and immunofluorescence staining assays were used to evaluate the activation of the nuclear factor kappa-B (NF-κB) signaling pathway. We found that DDX20 was upregulated, while miR-361-5p was underexpressed in IL-1ß-treated chondrocytes. Downregulation of DDX20 inhibits levels of matrix metalloproteinases (MMPs) and suppresses inflammation induced by IL-1ß. Mechanistically, miR-361-5p was verified to directly target DDX20. In addition, hBMSC-derived exosomes-transferred miR-361-5p alleviates chondrocyte damage and inhibits the NF-κB signaling pathway via targeting DDX20. Inhibition of NF-κB signaling reverses the effect of overexpressed DDX20 on IL-1ß-induced chondrocyte damage. Moreover, exosomal miR-361-5p alleviates OA damage in vivo. Overall, hBMSC-derived exosomal miR-361-5p alleviates OA damage by targeting DDX20 and inactivating the NF-κB signaling pathway.


Assuntos
Proteína DEAD-box 20/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Animais , Modelos Animais de Doenças , Humanos , MicroRNAs/genética , Ratos , Ratos Wistar , Transdução de Sinais
6.
J Cell Mol Med ; 24(20): 11972-11983, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32896108

RESUMO

Osteolysis around the prosthesis and subsequent aseptic loosening are the main causes of prosthesis failure. Inflammation due to wear particles and osteoclast activation are the key factors in osteolysis and are also potential targets for the treatment of osteolysis. However, it is not clear whether puerarin can inhibit chronic inflammation and alleviate osteolysis. In this study, we investigated the effect of puerarin on Ti particle-induced inflammatory osteolysis in vivo in rat femoral models and in vitro in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast activation models. Our in vivo results showed that puerarin significantly inhibited Ti particle-induced osteolysis and the expression of matrix metallopeptidase 9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), tumour necrosis factor (TNF)-α and interleukin (IL)-6. In vitro, puerarin prevented RANKL-induced osteoclast differentiation, bone resorption and F-actin ring formation in a concentration-dependent manner. Furthermore, puerarin decreased the phosphorylation of p65 and prevented p65 moving from the cytoplasm to the nucleus. Puerarin also reduced the expression of osteoclast-specific factors and inhibited the inflammatory response. In conclusion, our study proves that puerarin can block the NF-κB signalling pathway to inhibit osteoclast activation and inflammatory processes, which provides a new direction for the treatment of osteolysis-related diseases.


Assuntos
Isoflavonas/farmacologia , NF-kappa B/metabolismo , Osteogênese , Osteólise/induzido quimicamente , Ligante RANK/farmacologia , Transdução de Sinais , Titânio/efeitos adversos , Actinas/metabolismo , Animais , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Isoflavonas/química , Isoflavonas/uso terapêutico , Masculino , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteólise/complicações , Osteólise/patologia , Células RAW 264.7 , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
7.
J Cell Mol Med ; 24(13): 7490-7503, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485091

RESUMO

Aseptic loosening caused by periprosthetic osteolysis (PPO) is the main reason for the primary artificial joint replacement. Inhibition of inflammatory osteolysis has become the main target of drug therapy for prosthesis loosening. MiR-106b is a newly discovered miRNA that plays an important role in tumour biology, inflammation and the regulation of bone mass. In this study, we analysed the in vivo effect of miR-106b on wear debris-induced PPO. A rat implant loosening model was established. The rats were then administrated a lentivirus-mediated miR-106b inhibitor, miR-106b mimics or an equivalent volume of PBS by tail vein injection. The expression levels of miR-106b were analysed by real-time PCR. Morphological changes in the distal femurs were assessed via micro-CT and histopathological analysis, and cytokine expression levels were examined via immunohistochemical staining and ELISA. The results showed that treatment with the miR-106b inhibitor markedly suppressed the expression of miR-106b in distal femur and alleviated titanium particle-induced osteolysis and bone loss. Moreover, the miR-106b inhibitor decreased TRAP-positive cell numbers and suppressed osteoclast formation, in addition to promoting the activity of osteoblasts and increasing bone formation. MiR-106b inhibition also significantly regulated macrophage polarization and decreased the inflammatory response as compared to the control group. Furthermore, miR-106b inhibition blocked the activation of the PTEN/PI3K/AKT and NF-κB signalling pathways. Our findings indicated that miR-106b inhibition suppresses wear particles-induced osteolysis and bone destruction and thus may serve as a potential therapy for PPO and aseptic loosening.


Assuntos
Osso e Ossos/patologia , Inflamação/genética , MicroRNAs/metabolismo , Osteólise/etiologia , Osteólise/genética , Próteses e Implantes/efeitos adversos , Animais , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/etiologia , Reabsorção Óssea/genética , Osso e Ossos/diagnóstico por imagem , Contagem de Células , Polaridade Celular , Citocinas/metabolismo , Inflamação/patologia , Rim/patologia , Fígado/patologia , Macrófagos/metabolismo , Masculino , MicroRNAs/genética , NF-kappa B/metabolismo , Osteoclastos/patologia , Osteogênese/genética , Osteólise/diagnóstico por imagem , Osteoprotegerina/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Titânio/efeitos adversos
8.
J Cell Physiol ; 235(3): 2599-2608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498438

RESUMO

Excessive osteoclast recruitment and activation is the chief cause of periprosthetic osteolysis and subsequent aseptic loosening, so blocking osteolysis may be useful for protecting against osteoclastic bone resorption. We studied the effect of aspirin on titanium (Ti)-particle-induced osteolysis in vivo and in vitro using male C57BL/6J mice randomized to sham (sham surgery), Ti (Ti particles), low-dose aspirin (Ti/5 mg·kg-1 ·d-1 aspirin), and high-dose aspirin (Ti/30 mg·kg-1 ·d-1 aspirin). After 2 weeks, a three-dimensional reconstruction evaluation using micro-computed tomography and histomorphology assessment were performed on murine calvariae. Murine hematopoietic macrophages and RAW264.7 lineage cells were studied to investigate osteoclast formation and function. Aspirin attenuated Ti-particle-induced bone erosion and reduced osteoclasts. In vitro, aspirin suppressed osteoclast formation, osteoclastic-related gene expression, and osteoclastic bone erosion in a dose-dependent manner. Mechanically, aspirin reduced osteoclast formation by suppressing receptor activator of nuclear factor kappa-B ligand-induced activation of extracellular signal-related kinase, p-38 mitogen-activated protein kinase, and c-Jun N-terminal kinase. Thus, aspirin may be a promising option for preventing and curing osteoclastic bone destruction, including peri-implant osteolysis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Osteólise/prevenção & controle , Animais , Artroplastia de Substituição/efeitos adversos , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Macrófagos/metabolismo , Masculino , Nanopartículas Metálicas/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , Próteses e Implantes/efeitos adversos , Células RAW 264.7 , Crânio/efeitos dos fármacos , Crânio/patologia , Titânio/efeitos adversos , Tomografia Computadorizada por Raios X , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
9.
Lab Invest ; 99(2): 271-280, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30429507

RESUMO

Osteoblast differentiation plays a critical role in bone formation and maintaining balance in bone remodeling. Runt-related transcription factor 2 (Runx2) is a central transcription factor regulating osteoblast differentiation and promoting bone mineralization. Until now, the molecular regulatory basis and especially the gene regulatory network of osteogenic differentiation have been unclear. Krüppel-like factor 2 (KLF2) is a zinc finger structure and DNA-binding transcription factor. The current study aimed to investigate the physiological function of KLF2 in osteoblast differentiation. Our results indicate that KLF2 is expressed in pre-osteoblast MC3T3-E1 cells and primary osteoblasts. Interestingly, KLF2 expression is increased in osteoblasts during the osteoblastic differentiation process. Overexpression of KLF2 in MC3T3-E1 cells promoted the expression of the osteoblastic differentiation marker genes Alp, Osx, and Ocn, and stimulated mineralization by increasing Runx2 expression at both the mRNA and protein levels. In contrast, knockdown of KLF2 produced the opposite effects. Importantly, we found that KLF2 could physically interact with Runx2. KLF2 promoted osteoblast differentiation by regulating Runx2 and physically interacting with Runx2. Taken together, the findings of this study identify KLF2 as a novel regulator of osteoblast differentiation. Our findings suggest that KLF2 might be a new therapeutic target for bone disease.


Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Osteoblastos , Animais , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Osteoblastos/citologia , Osteoblastos/fisiologia
10.
IUBMB Life ; 71(7): 969-977, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30897288

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of unknown etiology characterized by degradation of cartilage and bone, accompanied by unimpeded proliferation of synoviocytes of altered phenotype. In the present study, we investigated the involvement of the glucagon-like peptide 1 (GLP-1) receptor on human fibroblast-like synoviocytes (FLS) in the pathogenesis of RA using the selective GLP-1 agonist exenatide, a licensed drug used for the treatment of type 2 diabetes. Our results indicate that exenatide may play a role in regulating tumor necrosis factor-α-induced mitochondrial dysfunction by increasing mitochondrial membrane potential, oxidative stress by reducing the production of reactive oxygen species, the expression of NADPH oxidase 4, expression of matrix metalloproteinase (MMP)-3 and MMP-13, release of proinflammatory cytokines including interleukin-1ß (IL-1ß), IL-6, monocyte chemoattractant protein-1, and high-mobility group protein 1, as well as activation of the p38/nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α/nuclear factor κB signaling pathway in primary human RA FLS. These positive results indicate that exenatide may have potential as a therapeutic agent for the treatment and prevention of RA. © 2019 IUBMB Life, 9999(9999):1-9, 2019.


Assuntos
Artrite Reumatoide/imunologia , Exenatida/farmacologia , Fibroblastos/imunologia , Hipoglicemiantes/farmacologia , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Sinoviócitos/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
BMC Musculoskelet Disord ; 20(1): 349, 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31351472

RESUMO

BACKGROUND: Female patients are more likely to have tendon injuries than males, especially those who has a higher concentration of relaxin. Previous studies have demonstrated that relaxin attenuates extracellular matrix (ECM) formation. However, the mechanism of relaxin on tendon repair remains unclear. We hypothesize that relaxin inhibits tendon healing by disrupting collagen synthesis. METHODS: A patellar tendon window defect model was established using Sprague-Dawley rats. The center of the patellar tendon was removed from the patella distal apex and inserted to the tibia tuberosity in width of 1 mm. Then, the rats were injected with saline (0.2 µg/kg/day) or relaxin (0.2 µg/kg/day) for two and four weeks, which was followed by biomechanical analysis and histological and histochemical examination. RESULTS: Mechanical results indicated that relaxin induces a significant decrease in tear resistance, stiffness, and Young's modulus compared to those rats without relaxin treatment. In addition, it was shown that relaxin activates relaxin family peptide receptor 1(RXFP1), disturbs the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs), and reduces the deposition of collagen in injury areas. CONCLUSIONS: Relaxin impairs tendon healing in rats. Also, relaxin might lead to tendon injury more commonly for females than males.


Assuntos
Colágeno/biossíntese , Ligamento Patelar/lesões , Relaxina/administração & dosagem , Traumatismos dos Tendões/patologia , Cicatrização/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Injeções Subcutâneas , Masculino , Ligamento Patelar/patologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Fatores Sexuais
12.
Int J Surg ; 110(6): 3212-3222, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498390

RESUMO

BACKGROUND: Joint replacement is successful for end-stage oeteoarthritis, with obesity linked to elevated risk. But the impact of obesity on self-reported health and exercise capacity among joint replacement patients remains complex and requires investigation. METHODS: This study utilizes data from the National Health and Nutrition Examination Survey (NHANES) to examine the relationship between obesity severity, demographic factors, medical comorbidities, and self-reported health status. The relationship between general health status and BMI was analyzed using multivariable regression, and further illustrated using a restricted cubic spline. Additionally, a bibliometric analysis and systematic review was done to frame the research within the broader context of existing knowledge and demographic specifics. RESULTS: Analysis of NHANES data involving 327 joint replacement patients yielded intriguing insights. The difference in self-reported health between BMI groups did not achieve conventional statistical significance ( P =0.06), and multivariable analysis showed that even severely obese patients did not exhibit significantly elevated risk of poor/fair self-reported health compared to normal weight subjects. Among severely obese individuals (BMI>40), 40.63% still rated their health positively. However, stratified analyses indicated that obesity correlated with negative health reports across sex, age, and education strata. Notably, physical functioning emerged as a robust predictor of self-reported health, with those reporting no walking difficulties having significantly lower odds of poor/fair health (Odds ratio=0.37, P =0.01). CONCLUSION: The study highlights the need for healthcare providers to consider individual physical abilities and comorbidities alongside obesity severity when discussing treatment options with joint replacement patients. It supports tailored interventions and informed shared decision-making. Future research could explore effective weight management strategies for obese individuals undergoing joint replacement.


Assuntos
Nível de Saúde , Inquéritos Nutricionais , Obesidade , Autorrelato , Humanos , Masculino , Feminino , Obesidade/epidemiologia , Obesidade/complicações , Obesidade/fisiopatologia , Pessoa de Meia-Idade , Adulto , Idoso , Artroplastia de Substituição , Índice de Massa Corporal , Tolerância ao Exercício/fisiologia
13.
Endocr Rev ; 45(1): 95-124, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37459436

RESUMO

The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.


Assuntos
Reabsorção Óssea , Osso e Ossos , Humanos , Osteoblastos/fisiologia , Sistemas Neurossecretores , Homeostase
14.
Biomaterials ; 308: 122544, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579591

RESUMO

Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.


Assuntos
Doenças Cardiovasculares , Exossomos , Medicina Regenerativa , Exossomos/metabolismo , Humanos , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/metabolismo , Animais , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
15.
J Adv Res ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710468

RESUMO

BACKGROUND: Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW: Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.

16.
Adv Sci (Weinh) ; : e2401833, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922775

RESUMO

Inadequate osseointegration at the interface is a key factor in orthopedic implant failure. Mechanistically, traditional orthopedic implant interfaces fail to precisely match natural bone regeneration processes in vivo. In this study, a novel biomimetic coating on titanium substrates (DPA-Co/GFO) through a mussel adhesion-mediated ion coordination and molecular clicking strategy is engineered. In vivo and in vitro results confirm that the coating exhibits excellent biocompatibility and effectively promotes angiogenesis and osteogenesis. Crucially, the biomimetic coating targets the integrin α2ß1 receptor to promote M2 macrophage polarization and achieves a synergistic effect between immunomodulation and vascularized bone regeneration, thereby maximizing osseointegration at the interface. Mechanical push-out tests reveal that the pull-out strength in the DPA-Co/GFO group is markedly greater than that in the control group (79.04 ± 3.20 N vs 31.47 ± 1.87 N, P < 0.01) and even surpasses that in the sham group (79.04 ± 3.20 N vs 63.09 ± 8.52 N, P < 0.01). In summary, the novel biomimetic coating developed in this study precisely matches the natural process of bone regeneration in vivo, enhancing interface-related osseointegration and showing considerable potential for clinical translation and applications.

17.
Adv Sci (Weinh) ; : e2404080, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041921

RESUMO

The molecular mechanism underlying abnormal osteoclastogenesis triggering subchondral bone remodeling in osteoarthritis (OA) is still unclear. Here, single-cell and bulk transcriptomics sequencing analyses are performed on GEO datasets to identify key molecules and validate them using knee joint tissues from OA patients and rat OA models. It is found that the catalytic subunit of protein phosphatase 2A (PP2Ac) is highly expressed during osteoclastogenesis in the early stage of OA and is correlated with autophagy. Knockdown or inhibition of PP2Ac weakened autophagy during osteoclastogenesis. Furthermore, the ULK1 expression of the downstream genes is significantly increased when PP2Ac is knocked down. PP2Ac-mediated autophagy is dependent on ULK1 phosphorylation activity during osteoclastogenesis, which is associated with enhanced dephosphorylation of ULK1 Ser637 residue regulating at the post-translational level. Additionally, mTORC1 inhibition facilitated the expression level of PP2Ac during osteoclastogenesis. In animal OA models, decreasing the expression of PP2Ac ameliorated early OA progression. The findings suggest that PP2Ac is also a promising therapeutic target in early OA.

18.
Biomaterials ; 307: 122515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401481

RESUMO

Implant-associated infections (IAIs) pose a significant threat to orthopedic surgeries. Bacteria colonizing the surface of implants disrupt bone formation-related cells and interfere with the osteoimmune system, resulting in an impaired immune microenvironment and osteogenesis disorders. Inspired by nature, a zeolitic imidazolate framework (ZIF)-sealed smart drug delivery system on Ti substrates (ZSTG) was developed for the "natural-artificial dual-enzyme intervention (NADEI)" strategy to address these challenges. The subtle sealing design of ZIF-8 on the TiO2 nanotubes ensured glucose oxidase (GOx) activity and prevented its premature leakage. In the acidic infection microenvironment, the degradation of ZIF-8 triggered the rapid release of GOx, which converted glucose into H2O2 for disinfection. The Zn2+ released from degraded ZIF-8, as a DNase mimic, can hydrolyze extracellular DNA, which further enhances H2O2-induced disinfection and prevents biofilm formation. Importantly, Zn2+-mediated M2 macrophage polarization significantly improved the impaired osteoimmune microenvironment, accelerating bone repair. Transcriptomics revealed that ZSTG effectively suppressed the inflammatory cascade induced by lipopolysaccharide while promoting cell proliferation, homeostasis maintenance, and bone repair. In vitro and in vivo results confirmed the superior anti-infective, osteoimmunomodulatory, and osteointegrative capacities of the ZSTG-mediated NADEI strategy. Overall, this smart bionic platform has significant potential for future clinical applications to treat IAIs.


Assuntos
Anti-Infecciosos , Zeolitas , Osseointegração , Peróxido de Hidrogênio/farmacologia , Macrófagos , Anti-Infecciosos/farmacologia , Osteogênese
19.
Orthop Surg ; 15(9): 2445-2453, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37403559

RESUMO

Oxford unicompartmental knee arthroplasty (UKA) has been particularly prevalent because the concept of knee preservation is deeply rooted in people's minds. Mobile bearing UKA is a surgical type of UKA with considerable advantages. This note describes some surgical techniques, including patient position, surgical field exposure, selection of the size of the prosthesis, sagittal tibial osteotomy, placement of the femoral prosthesis and gap balance, to assist surgeons with less experience in performing these operations successfully. The techniques described in this note have been used in over 500 Oxford UKA cases, and nearly 95% patients achieved good prosthesis position and satisfactory postoperative outcome. We hope that the empirical summaries from numerous cases will help surgeons to learn Oxford UKA quickly and effectively, driving the spread of the technique and benefiting more patients.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Humanos , Artroplastia do Joelho/métodos , Osteoartrite do Joelho/cirurgia , Tíbia/cirurgia , Estudos Retrospectivos , Articulação do Joelho/cirurgia , Resultado do Tratamento
20.
Bioact Mater ; 24: 263-312, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36632509

RESUMO

Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA